About Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Better Cancer Therapies Can Occur With Help Of New Insights into DNA Repair Process

by Rukmani Krishna on October 4, 2013 at 12:26 AM
Font : A-A+

 Better Cancer Therapies Can Occur With Help Of New Insights into DNA Repair Process

A better understanding of how cells deal with the barrage of damage that can contribute to cancer and other diseases was gained by scientists at the Duke Cancer Institute. They did this by detailing a process required for repairing DNA breakage.

The insights, reported online the week of Sept. 30, 2013, in the journal Proceedings of the National Academy of Sciences, build on earlier work by the research team and identify new prospects for developing cancer therapies.

Advertisement

The researchers have focused on a complex series of events that cells routinely undertake to repair DNA damaged by sun exposure, smoking and even normal metabolism. If not correctly repaired, DNA breakages can result in cellular damage leading to cancer.

"We never had good assays to measure how DNA breaks are repaired, and there were few good tools to study how that repair unfolds at the molecular level," said senior author Michael Kastan, M.D., PhD, executive director of the Duke Cancer Institute. "Our work for the first time enables us to both sensitively measure the repair of DNA breaks and study the molecular mechanisms by which they occur."
Advertisement

DNA inside the cell faces a challenge for repairing itself because it is so compacted in the cell nucleus. Tightly wrapped in a complex of proteins called chromatin, the DNA is spooled like thread around a protein structure called a nucleosome. DNA could suffer a breakage that would go unheeded if it remained deep within the reel.

The system developed by Kastan and colleagues induced DNA breakage at defined points on the DNA strands, enabling researchers to chronicle events as the cells launched the repair process.

What they described for the first time was a choreographed interaction in which the tightly wound DNA was temporarily loosened when a key protein, called nucleolin, was recruited to the breakage site, disrupting the nucleosome spool. The process was then reversed when the nucleosome was re-formed after repair was complete.

"Our study demonstrates for the first time the functional importance of nucleosome disruption in DNA repair," Kastan said. "This nucleosome disruption allows DNA repair proteins to access the DNA lesion and begin the process of mending the breakage."

Kastan said the finding provides key insights for how cells remain healthy, as well as how the repair process could potentially be manipulated. New cancer therapies, for instance, could target nucleolin to enhance sensitivity of tumor cells to radiation or chemotherapies, he said.

"This could give us an opportunity to make current treatments more potent," Kastan said. "That would be a next area of research, which we are especially interested in pursuing."

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
Monkeypox Outbreak: What it is, How Does it Spread & the Prevention
Seasonal Allergy Medications
How to Choose the Best Eczema-Friendly Moisturizer for Children?
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
DNA Finger Printing Cancer and Homeopathy Cancer Facts Genetic Testing of Diseases Cancer Tattoos A Body Art Epigenetics Common Lifestyle Habits that Cause Diseases Health Benefits of Dandelion Plant Oxidative Stress / Free Radicals Cell Injury 

Most Popular on Medindia

Post-Nasal Drip Selfie Addiction Calculator Diaphragmatic Hernia Calculate Ideal Weight for Infants Drug - Food Interactions Blood Donation - Recipients The Essence of Yoga Hearing Loss Calculator Blood Pressure Calculator Turmeric Powder - Health Benefits, Uses & Side Effects

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use