Medindia LOGIN REGISTER
Medindia

Artificial Muscle Thousand Times Stronger Than Human Muscle

by Dr. Enozia Vakil on Dec 22 2013 3:22 PM

 Artificial Muscle Thousand Times Stronger Than Human Muscle
Scientists have now constructed a micro-sized robotic muscle using vanadium dioxide, which is 1000 times powerful than the human muscles.
Junqiao Wu, a physicist who holds joint appointments with Berkeley Lab's Materials Sciences Division and the University of California-Berkeley's Department of Materials Science and Engineering, said that they've created a micro-bimorph dual coil that functions as a powerful torsional muscle, driven thermally or electro-thermally by the phase transition of vanadium dioxide.

He said that using a simple design and inorganic materials, they achieve superior performance in power density and speed over the motors and actuators now used in integrated micro-systems.

Wu and his colleagues fabricated their micro-muscle on a silicon substrate from a long "V-shaped" bimorph ribbon comprised of chromium and vanadium dioxide.

When the V-shaped ribbon is released from the substrate it forms a helix consisting of a dual coil that is connected at either end to chromium electrode pads.

Heating the dual coil actuates it, turning it into either a micro-catapult, in which an object held in the coil is hurled when the coil is actuated, or a proximity sensor, in which the remote sensing of an object (meaning without touching it) causes a "micro-explosion," a rapid change in the micro-muscle's resistance and shape that pushes the object away.

Wu said that the multiple micro-muscles can be assembled into a micro-robotic system that simulates an active neuromuscular system, asserting that the naturally combined functions of proximity sensing and torsional motion allow the device to remotely detect a target and respond by reconfiguring itself to a different shape.

Advertisement
The paper has been published in the journal Advanced Materials.

Source-ANI


Advertisement