About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Are You a Couch Potato?- Its in Your Genes!

by Tanya Thomas on July 18, 2008 at 9:58 AM
Are You a Couch Potato?- Its in Your Genes!

If you're a couch potato, don't worry. It's not your fault! Apparently you are just wired to be that way! As it turns out you may just be able to blame your genes for your lazy disposition.

While working out is known to be the key to manage good health, two new studies suggest that the inclination to engage in physical activity may be strongly affected by genetics.

Advertisement

While not much research has been done into the effects of genetics on human activity, recent studies on mice have indicated strong genetic influences.

In one of the recent studies a team led by University of North Carolina at Charlotte kinesiologist J. Timothy Lightfoot identified six locations on the mouse chromosome where differences had a strong relationship to activity, indicating at least six genes that individually can affect activity.
Advertisement

A second genetic study by the same team found seventeen other genetic locations that were also having an effect on activity levels by interacting with each other, a genetic effect known as epistasis.

Taken together, the located genes account for approximately 84pct of the behavioral differences between mice that exhibit low activity levels and mice that show high activity traits.

"Can you be born a couch potato? In exercise physiology, we didn't think so, but now I would say most definitely you can," said Lightfoot.

Lightfoot worked with strains of mice that had markedly different behaviors when given an exercise wheel. A "high-active" strain scored notably higher than other strains in speed, duration and distance achieved in running than other strains, including one that was labeled as "aggressively sedentary" because of its consistent avoidance of activity.

Initially, Lightfoot suspected that the difference was due to genetic factors affecting the way energy is used by muscle tissue because early genetic studies of the strains indicated that variation was present in genes known to affect metabolism. However, studies on muscle tissue in the different mice failed to show a genetic effect that could cause a difference in muscle performance.

"We have done some gene chips on muscle tissue and we don't see any differential expression between high-active and low-active animals in peripheral (muscle) tissue. So the suggestion that by over-expressing a glucose transporter we can increase activity doesn't seem to be the explanatory factor," said Lightfoot.

Subsequent studies indicated that genetic differences are having a profound affect on mouse activity levels by causing significant differences in their brains.

"More and more what we are seeing is differences in brain chemistry. We are really convinced now that the difference is in the brain. There is a drive to be more active," said Lightfoot.

The current studies interbred active and inactive strains of mice to re-sort the genes. The researchers tested the second generation (f2) of offspring for activity using three measurements -- speed, endurance and distance - and found a range of significant differences among the new hybrid mice in their overall activity levels. The team then performed genetic tests on the mice and found significant correlations between differences in their genomes and the behavioral variations.

While differences in activity could not be exclusively connected to genetics, a surprisingly large amount of the activity difference in the hybrids - about half - had a strong relationship to the specific genetic variations identified.

"We don't know yet what the genes involved in activity are doing, but there is some strong suggestion that many of them may be involved in regulating dopamine. In one sense it is very similar to a model for genetic influences on ADD," noted Lightfoot.

Source: ANI
TAN/M
Font : A-A+

Advertisement

Advertisement
Advertisement

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Are You a Couch Potato?- Its in Your Genes! Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests