About My Health Careers Internship MedBlogs Contact us

Antioxidant Pathway Disruption may Prevent Cardiomyopathy

by Dr. Enozia Vakil on October 12, 2013 at 4:41 PM
Font : A-A+

 Antioxidant Pathway Disruption may Prevent Cardiomyopathy

The deficiency of an antioxidant response protein, nuclear erythroid-2 like factor-2 (Nrf2) may delay and prevent hypertrophic cardiomyopathy, a new study revealed.

This new finding, published in the Oct. 1, 2013, issue of Cardiovascular Research, suggests that restoring the normal balance of reduction-oxidation chemical reactions in the body could prevent heart disease and other conditions caused by reductive stress.


Nuclear erythroid-2 like factor-2 (Nrf2) is a key regulatory protein in the signaling pathway that triggers the body's primary defense against oxidative stress, a condition where increased production of oxygen-containing free radicals causes cell damage. Many cardiac diseases, including hypertrophic cardiomyopathy, are linked to oxidative stress. However, in a previous study, University of Utah researchers demonstrated that reductive stress, the counterpart of oxidative stress, can also harm the heart due to excessive levels of an antioxidant called reduced glutathione.

"Heart muscle cells, like all cells, are sensitive to shifts in the chemical reactions occurring inside and around them," says Namakkal S. Rajasekaran, Ph.D., research assistant professor of internal medicine at the University of Utah and principal author on the study. "While antioxidants are widely considered an important defense against heart disease, an increasing body of evidence indicates that excessive antioxidant activity can harm the body by creating a condition of reductive stress."

Rajasekaran and his colleagues studied laboratory mice with heart disease caused by mutations in alpha B-Crystallin, a protein that normally helps other proteins fold inside cells. These mice develop mutant protein aggregation cardiomyopathy (MPAC), a type of heart failure characterized by reductive stress and protein aggregation, the clumping together of misfolded proteins.

"From our earlier research, we know that Nrf2 is a critical regulator of antioxidant activity and sustained activation of Nrf2 causes reductive stress, which contributes to MPAC," says Rajasekaran. "In this study, we investigated whether disrupting Nrf2 can decrease the activity of antioxidant pathways and prevent the development of cardiac disease."

The researchers compared two strains of MPAC mice - one with normal Nrf2 and another with Nrf2 deficiency. They found that, while mice with normal Nrf2 developed heart muscle thickening and heart failure, mice that were deficient in Nrf2 did not. They also found that Nrf2 deficiency suppressed reductive stress, reduced cardiac protein aggregation and extended survival.

"Our study demonstrates that preventing excessive antioxidant activity and shifting away from a reductive environment is both necessary and sufficient to prevent harmful cardiac remodeling," says Rajasekaran.

The body's antioxidant response provides a natural defense against oxidative stress, but not reductive stress. This new research reveals a novel mechanism for the development and prevention of reductive stress-induced hypertrophic cardiomyopathy and heart failure. Rajasekaran and his colleagues demonstrated that dampening the activity of Nrf-2 decreases chronic reductive stress and prevents improper protein aggregation by restoring the equilibrium of chemical reactions inside heart muscle cells.

"While MPAC is a rare condition, our findings are broadly applicable to heart disease and other conditions caused by protein aggregation, such as Alzheimer's," says Rajasekaran. "What this means is that the antioxidant supplements many people take could actually be doing more harm than good, especially if they are taken in excess."

Source: Eurekalert

News A-Z
News Category
What's New on Medindia
Printed Temperature Sensors help with Continuous Temperature Monitoring
Health Benefits of Giloy
Breast Cancer Awareness Month 2021 - It's time to RISE
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Food Additives Mitral Valve Stenosis And Mitral Valve Replacement Herbs and Antioxidants Cardiomyopathy Mint It All! Quiz on Antioxidants Foods that Gives You Sparkling Eyes Berries for a Healthy and Beautiful You Anti-Aging Treatment with Vinotherapy or Wine Facials The Fruit in News – Guava 
Recommended Reading
Anti-Aging Treatment with Vinotherapy or Wine Facials
Experience the bliss of vinotherapy - the power of grapes for a kissable skin....
Berries for a Healthy and Beautiful You
Antioxidants in the form of small berries packed with wonderful benefits…Find out how these tiny ber...
Cardiomyopathy weakens the heart muscles and the heart loses strength to pump blood throughout the b...
Food Additives
A food additive is a non-nutritive substance added deliberately to any food product to improve its c...
Foods that Gives You Sparkling Eyes
Food not only sustains us but the kind and quality of food determines the state of your health, whic...
Herbs and Antioxidants
Herbs are rich sources of anti-oxidants that help build your immune system. Reach out for your spice...
Mint It All!
A popular garden herb, mint has earned worldwide fame both in the kitchen as well as health. A tasty...
Mitral Valve Stenosis And Mitral Valve Replacement
Mitral valve replacement is a surgical heart procedure to correct either the narrowing (stenosis) or...
The Fruit in News – Guava
Anti-oxidant property of guava has recently been found be the highest amongst commonly consumed Indi...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use