About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Alzheimer's Disease Linked to a Molecular Reaction

by Dr. Enozia Vakil on June 1, 2013 at 11:10 PM
Font : A-A+

 Alzheimer's Disease Linked to a Molecular Reaction

The molecular mechanism behind the transformation of one of the components of Alzheimer's disease is now identified by a team of researchers at Lund University in Sweden. They identified the crucial step leading to formations that kill brain cells. Alzheimer's disease is associated with memory a loss and personality changes.

It is still not known what causes the onset of the disease, but once started it cannot be stopped. The accumulation of plaques in the brain is widely considered a hallmark of the disease. The key discovery identified the chemical reaction that causes the plaques to grow exponentially.Amyloid beta, a protein fragment that occurs naturally in the fluid around the brain, is one of the building blocks of plaques.

Advertisement

However, the processes leading from soluble amyloid beta to the form found in the plaques, known as amyloid fibril, have not been known. In the very early part of the process, two protein fragments can create a nucleus that then grows into a fibril. In solution this is a slow process, but the rate can be enhanced on surfaces. The current study shows that fibrils present a catalytic surface where new nuclei form and this reaction increases the speed of the process.

As soon as the first fibrils are formed, amyloid-beta fragments attach at its surface and form new fibrils that subsequently detach.- This process is thus self-perpetuating, and autocatalytic, and the more fibrils are present, the quicker the new ones are created, says Sara Snogerup Linse, Professor of Chemistry at Lund University and one of the researchers behind the study.
Advertisement

The findings also show that the chemical reaction on the fibril surface creates cell-killing formations. It is hoped that the research could lead to a new type of medication targeting early stages of the disease in the future. The results have emerged from several years of laboratory work by Professor Snogerup Linse and her colleague in Lund, Erik Hellstrand, including development of extensive methods to obtain amyloid beta in highly pure form and to study its transformation in a highly reproducible manner.

Additional methodology based on isotope labelling and spin filters was developed to monitor the surface catalysis and pin-point the origin of the forms that kill brain cells. The collaboration with the theoretical group and cell biologists at Cambridge University has been absolutely crucial for all the findings.



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Turmeric: Magic Ingredient to Keep you Healthy in Winter
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Alzheimers Disease Diet and Alzheimer´s Disease Genetics of Alzheimer´s disease 

Recommended Reading
Risk Factors for Alzheimers Disease
Cognitively normal adults exhibiting atrophy of their temporal lobe or damage to blood vessels in .....
Alzheimers Disease
Alzheimer's disease is a progressive neurodegenerative disease affecting memory and thinking and mak...
Diet and Alzheimer´s Disease
Alzheimer''s begins with forgetfulness, but over time affects speech and coordination along with dra...
Genetics of Alzheimer´s disease
There are numerous genes that have been discovered that are associated with Alzheimer’s disease and ...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use