About Careers Internship MedBlog Contact us

Advanced Epilepsy Treatments Made Possible By University of Toronto Biologists

by Sasikala Radhakrishnan on June 16, 2014 at 5:10 PM
Font : A-A+

Advanced Epilepsy Treatments Made Possible By University of Toronto Biologists

A team of biologists including one of Indian origin from University of Toronto has achieved a breakthrough by identifying proteins that can be targeted for correcting imbalances that are evidenced in neurological disorders, such as epilepsy, schizophrenia and autism spectrum disorder.

Professor Melanie Woodin, the research lead, said that neurons in the brain interact with other neurons by way of a process called synapses. In the process, they either excite or inhibit other neurons. He also added that any discrepancy in excitation or inhibition levels may cause improper brain function and induce seizures or other neurologic disorders.


A protein complex has been located that plays a key role in regulating the proper interaction of neurons at cellular level. The key proteins are KCC2, which is responsible for inhibitory impulse, GluK2, which is the receptor for excitatory transmitter glutamate, and Neto 2, which is an auxilary protein that communicates with the other two proteins. The protein complex integrates all these three proteins for synaptic communication.

"Finding that they are all directly interacting and can co-regulate each other's function reveals for the first time a system that can mediate excitation-inhibition balance among neurons themselves," said Vivek Mahadevan, a PhD candidate in Woodin's group and lead author of the study.

The cornerstone of the study was the application of an advanced sensitive gel system to determine native protein complexes in neurons known as Blue Native Page.

The researchers made this path-breaking discovery by conducting electrophysiology experiments, biochemistry, fluorescence imaging on mice brains.

"There is no cure for epilepsy; the best available treatments only control its effects, such as convulsions and seizures. We can now imagine preventing them from occurring in the first place," Woodin added.

The findings are published in the journal Cell Reports.

Source: Medindia


Recommended Readings

Latest Research News

Is There a Cure for Malaria Through Targeting Biological Clocks?
Malaria parasites sync their molecular rhythms with the internal 24-hour clocks of their hosts, said researchers.
Good Evening Recovery Leads to Better Work Days
A latest research suggests that the quality of a person's post-work recovery in the evening can impact their mood when they resume work the next day.
Link Between Sleep Apnea and Cognitive Decline
Researchers are working on new strategies and solutions for sleep apnea to ward off a range of health risks including cognitive decline.
Softening Stem Cells Enhances Hair Growth Potential
The scientists discovered that when the stem cells in the hair follicle are made softer, they have a higher chance of growing hair.
Potential New Strategy for Ischemic Stroke Discovered
A combinatorial therapy provided promising beneficial results among people with ischemic stroke.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close

Advanced Epilepsy Treatments Made Possible By University of Toronto Biologists Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests