About My Health Careers Internship MedBlogs Contact us

Achilles Heel of Many Types of Cancer Discovered

by Colleen Fleiss on August 24, 2019 at 3:25 PM
Font : A-A+

Achilles Heel of Many Types of Cancer Discovered

A new vulnerability in tumors that are driven by a common cancer gene known as MYC has been uncovered by a Ludwig Cancer Research study. Such cancers, it found, are highly dependent on the cell's machinery for making fats and other lipids.

Led by Chi Van Dang, scientific director of the Ludwig Institute for Cancer Research, and Stanford University researchers Dean Felsher and Richard Zare, the study also identifies a lipid signature associated with MYC-driven cancers. Further, it demonstrates that the cancer cell's predilection for manufacturing lipids rather than importing them as nutrients may be exploited for the development of new therapies for a broad spectrum of malignancies. The paper appears in the current issue of Cell Metabolism.


"Cells that are not growing bring in nutrients from the blood and make some of the other metabolic molecules they need," explains Dang. "But if you're a rapidly replicating cancer cell, you need a much larger supply of the building blocks of cells in order to continue proliferating."

Dang's laboratory previously discovered that MYC's dysregulation in cancer alters cellular metabolism and detailed how this master regulator of gene expression cranks up production of the molecular building blocks of cells, including the components of proteins and DNA. But how precisely oncogenic MYC alters gene expression to drive lipid synthesis was unknown. Lipids are critical constituents of cells: they build the cell's membranes and play an important role in protein function, metabolic reactions and molecular signaling.

In normal cells, a membrane-bound protein named SREBP1 monitors and controls lipid production. When it senses low cholesterol levels in the cell's membranes, SREBP1 moves into the nucleus and activates the expression of genes involved in lipid synthesis.

Postdoctoral researcher Arvin Gouw--who was previously in Dang's lab and is now in Felsher's--and colleagues found that the MYC protein boosts the expression of SREBP1. "What MYC does is put SREBP into overdrive and SREBP jumps onto the genes involved in lipid synthesis," Dang explains. "But we also found that MYC then binds to the same genes as SREBP1, and the two collaborate to push lipid synthesis to even higher levels." The researchers show that MYC controls the gene expression required for almost every stage of lipid synthesis, from the generation of precursor molecules to putting the finishing touches on large, complex lipids.

To further examine the phenomenon, postdoctoral researcher Katy Margulis and colleagues used DESI-MSI--a technology for profiling metabolites in intact tissues developed by Zare's lab--to map how oncogenic MYC alters the lipid content of tumors. Those studies revealed that a species of lipids known as glycerophosphoglycerols is particularly abundant in MYC-driven cancer cells. The researchers even identified a lipid signature associated with such tumors that could be used as a diagnostic marker.

Studies on mice engineered by Felsher's lab to generate, on demand, MYC-driven cancers of the blood, lungs, kidneys and liver revealed that such tumors are highly dependent on fatty acid synthesis. Inhibiting an early step of that process led to the regression of the induced tumors and of MYC-driven human tumors implanted in mice. Together with the identification of a lipid signature and the genes activated by oncogenic MYC, these data provide concrete information for the development of new drugs to treat a broad range of cancers.

"A very diverse expertise was essential to this study," Dang observes. "Bringing these various technologies and knowhow together enabled a deep understanding of something we didn't have great ideas about before, and it illustrates the power of interdisciplinary collaboration."

Even tumors that are primarily driven by other oncogenes, the researchers show, are susceptible to the inhibition of fatty acid production if they indirectly activate MYC.

Dang, for his part, is now interested in unraveling how cancer cells sense which lipids need to be made and how that information shapes MYC's activation of lipid synthesis.

This study was supported by Ludwig Cancer Research, the U.S. National Institutes of Health and the Stanford Center of Molecular Analysis and Design.

In addition to his Ludwig post, Dang is also a Professor at The Wistar Institute.

Source: Eurekalert

News A-Z
News Category
What's New on Medindia
First Dose of COVID-19 Vaccines May Improve Mental Health
Printed Temperature Sensors help with Continuous Temperature Monitoring
Health Benefits of Giloy
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Cancer and Homeopathy Cancer Facts Cancer Tattoos A Body Art Achilles Tendon Rupture or Tear Heel Pain Symptom Evaluation Common Lifestyle Habits that Cause Diseases Health Benefits of Dandelion Plant Immune Checkpoint Inhibitors for Cancer Treatment Non-Communicable Diseases 

Recommended Reading
Lung Cancer Screening
Lung cancer accounts for nearly 1.3 million deaths annually worldwide. Lung cancer screening can ......
Quiz on Cancer
Cancer, is the second most leading cause of death worldwide. Cancer is not just one disease but ......
Breast Cancer Risk Assessment Calculator
Breast Cancer Risk Assessment Calculator predicts the risk for breast cancer. Find list of breast .....
Cancer Prevention thro' Lifestyle Changes
Did u know that simple changes in lifestyle could lower your cancer risks? Find out how!...
Achilles Tendon Rupture or Tear
Achilles tendon tear or rupture occurs at the back of your lower leg. Achilles tendon tear occurs mo...
Common Lifestyle Habits that Cause Diseases
Cigarette smoking, unhealthy diets, overuse of alcohol, and physical inactivity are some of the most...
Health Benefits of Dandelion Plant
What is dandelion? Dandelion greens are nutrition powerhouses with a wide range of health benefits. ...
Heel Pain Symptom Evaluation
Heel pain is experienced by most of us and can be disabling at times even though it is not a life th...
Immune Checkpoint Inhibitors for Cancer Treatment
Immune checkpoint inhibitors are promising drugs to treat a variety of cancers and the FDA has appro...
Non-Communicable Diseases
Non-Communicable Diseases (NCDs) are a group of chronic non-infectious diseases which include Cardio...
Tattoos A Body Art
Tattoos are a rage among college students who sport it for the ‘cool dude’ or ‘cool babe’ look...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use