Medindia
Advertisement

Step Forward for Nanoparticles in Cancer Treatments

by Mohamed Fathima S on January 20, 2019 at 10:04 AM
Font : A-A+

Step Forward for Nanoparticles in Cancer Treatments

Now pharmacological and therapeutical properties of conventional cancer treatments could be improved through a novel targeted drug delivery system developed by the scientists. The targeting agent consists of supramolecularly built protein corona shield which regulates the boundary between nanoparticles and biological system, which shows enhanced safety and efficiency during treatment.

This breakthrough has been jointly led by Professor Ja-Hyoung Ryu, Professor Sebyung Kang, and Professor Chaekyu Kim in the School of Life Sciences at UNIST. Their findings have been published online in Nature Communications (IF: 12.353) on October 31, 2018.

Advertisement


Targeted drug delivery system refers to the method that selectively transports drugs to targeted tissues, organs, and cells through a variety of drugs carrier. Though tens of thousands of drug delivery systems have been developed, the effect has been minimal. This is because hundreds of proteins in the body stick to the drug delivery system (protein corona phenomenon). Because of this phenomenon, even when the drug reaches a target such as a cancer cell, the treatment efficiency is very low, and other side effects have been observed, which may cause toxic side effects.

"It was reported that it is possible to alleviate the impact of protein corona on target drug delivery through the formation of protective shield, made up of well-structured special proteins that are highly stable and do not interact with each other," says Professor Ryu. "The new technology is much like the strategy where you take control of your enemies, using enemies."
Advertisement

In this work, the research team introduced the protein corona shield (PCS) concept for an efficient target drug delivery system. Using recombinant DNA technology, the research team has created recombinant fusion proteins with the enhanced physical stability and cancer-selective targeting ability. This fusion protein, then, was used as a shield to encapsulate the surface of nanoparticle drug carriers, thus constructing PCS nanoparticles (PCSNs).

In principle, nanoparticle drug carriers with a target ligand lose their targeting ability on being coated by blood proteins in a biological environment. However, the new PCS system can inhibit blood protein adsorption to maintain the targeting ability and avoid unwanted clearance by the mononuclear phagocyte system.

To understand the interactions between PCSNs and external biological components, the research team has created an environment similar to human biological systems. This has been analyzed via computer simulation. The results showed about 10 times greater therapeutic efficacy in preventing the invasion of unwanted external proteins.

They also examined the effect of drug delivery using immune cells and cancer cells. The PCS drug delivery system could kill cancer cells without being caught by immune cells, even after long-term exposure to biological environments. In mouse models of cancer, the team found that the PCSN exhibit lower toxicity, as well as excellent tumor-targeting ability.

"Aside from treating cancer, our findings can also be applied to a variety of fields, such as the diagnosis and treatment of various diseases, as well as the heat-optical therapy," says Professor Ryu. "We plan to introduce a platform that will perform various roles while differently designing recombinant proteins in the future."

He adds, "It will be possible to access the universal platform, a long-time goal of nanotechnology. It is also meaningful that we have secured the source technology for a new target-oriented drug delivery system."



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Gonorrhea
World Alzheimer's Day 2021 - 'Know Dementia, Know Alzheimer's
'Hybrid Immunity' may Help Elude COVID-19 Pandemic
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Cancer and Homeopathy Cancer Facts Cancer Tattoos A Body Art Nanotechnology Common Lifestyle Habits that Cause Diseases Health Benefits of Dandelion Plant Immune Checkpoint Inhibitors for Cancer Treatment Non-Communicable Diseases 

Recommended Reading
Use of Nanotechnology in Healthcare
Nanotechnology provides several potential solutions for many life-threatening diseases. Learn more ....
Proton Beam Therapy for Cancer Treatment
Proton therapy is a form of radiotherapy for cancer treatment which uses a proton beam that is ......
Bone Cancer
Find the facts of bone cancer including types of bone cancer, symptoms, causes, treatment, ......
Drugs for Prostate Cancer
Prostate cancer is the main cause of cancer death in men. One of the treatment method includes ......
Common Lifestyle Habits that Cause Diseases
Cigarette smoking, unhealthy diets, overuse of alcohol, and physical inactivity are some of the most...
Health Benefits of Dandelion Plant
What is dandelion? Dandelion greens are nutrition powerhouses with a wide range of health benefits. ...
Immune Checkpoint Inhibitors for Cancer Treatment
Immune checkpoint inhibitors are promising drugs to treat a variety of cancers and the FDA has appro...
Non-Communicable Diseases
Non-Communicable Diseases (NCDs) are a group of chronic non-infectious diseases which include Cardio...
Tattoos A Body Art
Tattoos are a rage among college students who sport it for the ‘cool dude’ or ‘cool babe’ look...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use