About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Regulatory Molecule Behind the Functioning of Hematopoietic Stem Cells

by Mohamed Fathima S on March 14, 2019 at 5:48 PM
Font : A-A+

Regulatory Molecule Behind the Functioning of Hematopoietic Stem Cells

A molecule called Ragnase-1 is essential for the regulation of renewal and differentiation of hematopoietic stem and progenitor cells (HSPC), an origin where all blood cells are derived. According to the study, dysfunction of this molecule leads to an inability in regulating blood cell production, that can lead to the development of adverse effects such as blood-based malignancies.

The body needs to create a continuous supply of blood cells to enter circulation. Blood cells have a wide variety of functions ranging from supplying oxygen to tissues, fighting infections, and enabling the blood to clot upon injury. Avoiding deficiency of these cells or their excessive proliferation must involve a strict regulatory mechanism, but much remains to be clarified about how this works.

Advertisement


In this new study, reported in Nature Communications, the team first used a computer-based analysis to identify those genes that differed markedly in their expression between adult and embryonic HSPCs. Among these genes, they then selected Ragnase-1 for further analyses, given earlier findings of its role in the differentiation of another stem cell type. These further analyses included experiments with the deletion of one or both copies of the Ragnase-1 gene in mice, followed by evaluations of stem cell differentiation into other blood cell lineages and the overall health of these mice.

"Our findings showed that the deletion of both or even just one of the copies of Ragnase-1 led to abnormalities in the renewal and differentiation of HSPCs from the bone marrow," corresponding author Nobuyuki Takakura says. "The Ragnase-1 knockout mice also showed physiological abnormalities like weight loss and an enlarged spleen--and they died at a young age."
Advertisement

The team then looked into the mechanism by which Ragnase-1 facilitates its functions. They found that it exerts regulatory activity at the post-transcriptional level by degrading target mRNAs, Gata2 and Tal1, a process that is important for controlling hematopoiesis.

"Our findings showed that this activity of Ragnase-1 is key to determining whether stem cells remain in a quiescent state, self-renew to maintain a pool of such cells for future differentiation, or start to differentiate into the various blood cell lineages depending on the current needs of the body," lead author Hiroyasu Kidoya says.

The team's finding that Ragnase-1 plays a key role in the self-renewal and differentiation of HSPCs provides a new target for therapeutic strategies aimed at treating diseases such as leukemia.



Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

 Experiments on Child Brain Tumour and Muscle Ageing Heading to Space
The International Space Station will be used to carry out experiments seeking to improve understanding of incurable child brain tumors and the muscle aging process.
 Nearly 1 In 5 UK Adults Experience Negative Responses to Sounds
How many people in the UK have misophonia? In a representative sample study, most people had at least some irritation upon hearing trigger sounds.
Why Are 1 in 8 Indians at Risk of Irreversible Blindness
Routine eye-checkups and mass screenings enable early diagnosis and treatment of glaucoma. Late-stage glaucoma diagnosis leads to blindness.
 Blind People Feel Their Heartbeat Better Than Those With Sight
Brain plasticity following blindness leads to superior ability in sensing signals from the heart, which has implications for bodily awareness and emotional processing.
New Biomarkers Help Detect Alzheimer's Disease Early
A group of scientists were awarded £1.3 million to create a new “point of care testing” kit that detects Alzheimer's disease biomarkers.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Regulatory Molecule Behind the Functioning of Hematopoietic Stem Cells Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests