About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Protein Programs Connective Tissue Cells in Organ Scarring

by Mohamed Fathima S on February 6, 2019 at 4:27 PM
Protein Programs Connective Tissue Cells in Organ Scarring

Many chronic diseases occurring in organs are caused due to increased deposition of connective tissue followed by scarring. Now, researchers have uncoded a molecular network that is responsible for these processes and could also lead to new therapies in the future for organ scarring. According to the study, a protein known as PU.1 causes pathological deposition of connective tissue.

The increased deposition of connective tissue is a problem in chronic diseases of many organs such as the lungs (idiopathic pulmonary fibrosis), liver (cirrhosis), kidneys (kidney fibrosis), gut (graft versus host disease), and the skin (systemic sclerosis). Up to 40 percent of all deaths in industrial nations are caused by the deposition of connective tissue with subsequent tissue scarring.

Advertisement


In connective tissue diseases such as systemic sclerosis, referred to collectively as 'fibrosis', excessive activation of connective tissue cells leads to hardening of the tissue and scarring within the affected organ. In principle, these diseases can affect any organ system and very often lead to disruption of organ function. Connective tissue cells play a key role in normal wound healing in healthy individuals. However, if the activation of connective tissue cells cannot be switched off, fibrotic diseases occur, in which an enormous amount of matrix is deposited in the tissue, leading to scarring and dysfunction of the affected tissue. Until now, scientists did not fully understand why repair processes malfunction in fibrotic diseases.

An international team of scientists led by Dr. Andreas Ramming from the Chair of Internal Medicine III at FAU has now been able to decipher a molecular mechanism responsible for the ongoing activation of connective tissue cells. In experimental studies, the researchers targeted the protein PU.1. In normal wound healing, the formation of PU.1 is inhibited by the body so that at the end of the normal healing process the connective tissue cells can return to a resting state.
Advertisement

'We were able to show that PU.1 is activated in various connective tissue diseases in the skin, lungs, liver and kidneys. PU.1 binds to the DNA in the connective tissue cells and reprograms them, resulting in a prolonged deposition of tissue components,' explains Dr. Ramming. PU.1 is not the only factor involved in fibrosis, as factors that are involved in the deposition of scar tissue have already been identified in the past. What has been discovered now, however, is that PU.1 plays a central role in a network of factors controlling this process. 'PU.1 is like the conductor in an orchestra,' explains Ramming, 'if you take it out, the entire concert collapses.' This approach has already been tested using an experimental drug, fuelling the hope that clinical trials on inhibiting PU.1 may soon be able to be launched, aimed at treating fibrosis better.



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Cerebrospinal Fluid Leaks: Link to Traumatic Brain Injury and Dementia?
Cerebrospinal fluid (CSF) leaks are detected in approximately 1-3% of adults who have experienced a traumatic brain injury.
Astrocyte Activation Through Optogenetics: A New Hope in the Fight Against Alzheimer's
The optogenetic activation of hippocampal astrocytes can be viewed as a novel therapeutic avenue for addressing Alzheimer's disease.
Link Between Cholesterol and Inflammation in Alzheimer's Disease Identified
In Alzheimer's disease condition, the control and adjustment of ABCA7 levels in response to inflammation and the decrease in the availability of cholesterol.
Inflammatory Bowel Disease and Atopic Dermatitis Share Common Links
Atopic dermatitis (AD) and inflammatory bowel disease (IBD) can lead to alterations in the microbiome, and disruptions in the skin and gut barrier.
Vitiligo-Associated Autoimmunity Linked to Lower Health Risks
Gaining insights into mortality risks among vitiligo patients will enhance patient counseling, healthcare monitoring, and overall patient management strategies.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Protein Programs Connective Tissue Cells in Organ Scarring Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests