Medindia LOGIN REGISTER
Medindia

Researchers to Study Gulf Spill Air Pollution to Understand Urban Air Quality

by Tanya Thomas on Mar 14 2011 10:07 AM

 Researchers to Study Gulf Spill Air Pollution to Understand Urban Air Quality
NOAA researchers discovered an important new mechanism by which air pollution particles form, which could change the way urban air quality is understood and predicted.
The NOAA-led team showed that although the lightest compounds in the oil evaporated within hours, it was the heavier compounds, which took longer to evaporate, that contributed most to the formation of air pollution particles downwind. Because those compounds are also emitted by vehicles and other combustion sources, the discovery is important for understanding air quality in general, not only near oil spills.

"We were able to confirm a theory that a major portion of particulate air pollution is formed from chemicals that few are measuring, and which we once assumed were not abundant enough to cause harm," said Joost de Gouw

NOAA sent a research aircraft to the Gulf region in June 2010 to help other agencies assess pollutant levels in the air. The P-3 was already loaded with instruments designed to measure many types of air pollution particles - including "organic aerosol" - and the chemicals from which they are formed in air.

Air pollution particles can damage people's lung and heart function, and they also affect climate, with some aerosol, including OA, partially offsetting the warming from greenhouse gases by reflecting incoming sunlight or changing cloud properties, and other aerosol amplifying warming by increasing the amount of sunlight absorbed in the atmosphere.

De Gouw said he and his colleagues knew where to expect OA particles downwind from the oil spill based on conventional understanding: OA should form when the most lightweight, or "volatile," components of surface oil evaporate, undergo chemical reactions, and condense onto existing airborne particles.

Twenty to 30 percent of the surface oil fell into this volatile category, evaporating into the atmosphere within hours, according to the new analysis.

Advertisement
That gave it little time to spread out, so emissions came from the area immediately surrounding the spill.

A steady wind drew those emissions into a thin, linear streak of pollution in which organic aerosol was expected to form.

Advertisement
"But that's not what we saw," de Gouw said. "We saw this very broad plume of organic aerosol instead." OA levels in that plume were similar to levels found in U.S. urban air.

"The problem is that the heavier and lighter species are emitted at the same time from the same sources, so we could not study them separately in the atmosphere until Deepwater Horizon," de Gouw said.

Heavier components of oil take longer to evaporate, so they had more time to spread on the surface farther from the spill source than their lightweight siblings. When de Gouw and his colleagues ran a series of models showing how spilled oil spread across the Gulf, and how long it should take for various heavy, medium, and light fractions to evaporate, the conclusion was clear.

The heavier, less-volatile compounds from the oil - that were not actually measured by all the sophisticated instruments onboard the aircraft - were the culprit.

These heavier compounds are not measured in most air quality monitoring programs, which were designed to capture the conventional contributors to poor air quality. The new findings may also help understand why there is more organic aerosol in the polluted atmosphere than scientists can explain.

"This chemistry could be a very important source of aerosol in the United States and elsewhere," de Gouw said. "What we learned from this study will actually help us to improve air quality understanding and prediction."

The study was published in the March 11 edition of Science.

Source-ANI


Advertisement