About Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

New Gene Therapy for Muscular Dystrophy may be Available Soon

by Thilaka Ravi on February 27, 2009 at 5:14 PM
Font : A-A+

 New Gene Therapy for Muscular Dystrophy may be Available Soon

A potential new gene therapy for Duchenne muscular dystrophy (DMD), which mainly affects men, may soon be available, following a significant breakthrough achieved by University of Missouri scientists in the United States.

The researchers say that they have identified the location of genetic material responsible for the production of nNOS, a molecular compound that produces nitric oxide and is vital to curing the disease.

Advertisement

They describe nNOS as a "helper" molecular compound that enables a protein called dystrophin to prevent the muscle tissue from being replaced with fibrous, bony or fatty tissue, and losing function.

Previous studies have also shown dystrophin as an important piece to curing muscular dystrophy.

"When you exercise, not only does the muscle contract, but the blood vessels are constricted. nNOS is important because it produces nitric oxide that relaxes the blood vessels, helping to maintain the muscle with a healthy blood supply. If no blood reaches the muscle cells, they will eventually die. In DMD patients, this means the disease will progress as the muscle cells are replaced by the fibrous, bony or fatty tissue," said Dongsheng Duan, associate professor of molecular microbiology and immunology.
Advertisement

He claims that his team's study is the first to determine how to produce nNOS in a dystrophic muscle, or a muscle lacking dystrophin.

Writing about his study in The Journal of Clinical Investigation, the researcher reveals that he and his colleagues have identified the location of genetic material responsible for the production of nNOS.

After the identification of the genetic material, his team created a series of new dystrophin genes.

While experimenting on mice, the researchers genetically corrected the dystrophic animals with the new dystrophin gene, and found that the missing nNOS was restored in their muscle.

Duan revealed that the mice that received the new gene did not experience muscle damage or fatigue following exercise.

"With this new discovery, we've solved a longstanding mystery of Duchenne Muscular Dystrophy. This will change the way we approach gene therapy for DMD patients in the future. With this study, we have finally found the genetic material that can fully restore all the functions required for correcting a dystrophic muscle and turning it into a normal muscle," he said.

Source: ANI
THK/L
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
World Hypertension Day 2022 - Measure Blood Pressure Accurately, Control It, Live Longer!
Drinking This Popular Beverage May Drop Dementia Risk
Worst Mistakes Parents Make When Talking to Kids
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
DNA Finger Printing Muscular Dystrophy Reiki and Pranic Healing Genetic Testing of Diseases Pancreas Dysarthria Inborn Errors of Metabolism 

Most Popular on Medindia

Color Blindness Calculator Daily Calorie Requirements Noscaphene (Noscapine) Indian Medical Journals Drug Side Effects Calculator Blood Pressure Calculator Post-Nasal Drip Find a Doctor Accident and Trauma Care Loram (2 mg) (Lorazepam)

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use