About Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

3D Blood Vessels can be Printed in Mere Seconds

by Kathy Jones on September 16, 2012 at 5:55 PM
Font : A-A+

 3D Blood Vessels can be Printed in Mere Seconds

A novel technology that can fabricate microscale three dimensional (3D) structures out of soft, biocompatible hydrogels has been developed by nanoengineers at the University of California, San Diego.

Near term, the technology could lead to better systems for growing and studying cells, including stem cells, in the laboratory. Long-term, the goal is to be able to print biological tissues for regenerative medicine.

Advertisement

For example, in the future, doctors may repair the damage caused by heart attack by replacing it with tissue that rolled off of a printer.

The biofabrication technology, called dynamic optical projection stereolithography (DOPsL), was developed in the laboratory of NanoEngineering Professor Shaochen Chen.
Advertisement

Current fabrication techniques, such as photolithography and micro-contact printing, are limited to generating simple geometries or 2D patterns.

Stereolithography is best known for its ability to print large objects such as tools and car parts. The difference, said Chen, is in the micro- and nanoscale resolution required to print tissues that mimic nature's fine-grained details, including blood vessels, which are essential for distributing nutrients and oxygen throughout the body.

Without the ability to print vasculature, an engineered liver or kidney, for example, is useless in regenerative medicine. With DOPsL, Chen's team was able to achieve more complex geometries common in nature such as flowers, spirals and hemispheres. Other current 3D fabrication techniques, such as two-photon photopolymerization, can take hours to fabricate a 3D part.

The biofabrication technique uses a computer projection system and precisely controlled micromirrors to shine light on a selected area of a solution containing photo-sensitive biopolymers and cells.

This photo-induced solidification process forms one layer of solid structure at a time, but in a continuous fashion. The technology is part of a new biofabrication technology that Chen is developing under a four-year, 1.5 million dollar grant from the National Institutes of Health.

The Chen Research Group is focused on fabrication of nanostructured biomaterials and nanophotonics for biomedical engineering applications and recently moved into the new Structural and Materials Engineering Building, which is bringing nano and structural engineers, medical device labs and visual artists into a collaborative environment under one roof.

Details about the technology has been published in the journal Advanced Materials. (ANI)

Source: ANI
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
Top 10 Vitamin B12 Foods for Vegetarians - Slideshow
Targeted Screening Program Beneficial for Prostate Cancer Screening
Are Menopause Symptoms Troubling You?: Try these Options
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Thalassemia Blood in Stools - Symptom Evaluation Bombay Blood Group Angiogenesis 

Most Popular on Medindia

Sinopril (2mg) (Lacidipine) Blood - Sugar Chart The Essence of Yoga Nutam (400mg) (Piracetam) Post-Nasal Drip Turmeric Powder - Health Benefits, Uses & Side Effects Calculate Ideal Weight for Infants Pregnancy Confirmation Calculator Blood Pressure Calculator Accident and Trauma Care

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use