About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

3-D Image of Protein Filaments That Facilitate Hearing Created

by Rajashri on July 14, 2008 at 4:10 PM
Font : A-A+

 3-D Image of Protein Filaments That Facilitate Hearing Created

The mechanism behind hearing his now better understood, Berkeley Lab researchers have claimed.

The researchers claim that they have for the first time pieced together the three-dimensional structure of a gossamer-like filament of proteins in the inner ear, which enables the sense of hearing and balance.

Advertisement

They say that their work may lead to improved treatments for some forms of hearing loss, which affect about 10 per cent of people.

The filaments help transform the mechanical vibrations of sound into electrical signals that can be interpreted by the brain, say the researchers.
Advertisement

In their study report, they have revealed that such filaments are only four nanometres wide, and 160 nanometres long.

The world becomes silent when enough of them break, the report adds.

According to the researchers, the filaments are part of a sensory system that operates over a range of stimuli spanning six orders of magnitude, and that they make people capable enough to hear even a pin drop.

They say that no other sensory system in biology and the electrical engineering world is capable of this feat.

"It's one of the most beautifully deigned systems in the body. But how it really works remains a mystery. Our goal is to determine what the system looks like, so we can determine how it functions," Science Daily quoted Manfred Auer, a researcher in the Berkeley Lab's Life Sciences Division, as saying.

During the study, the researchers used electron tomography that acquires hundreds of images of a structure at different angles, reconstructs them into a three-dimensional composite, and yields highly detailed images of structures at the molecular scale.

Hair cells in the inner ear sprout hair bundles that bob and sway in fluid when the ear drum absorbs sound waves.

The researchers say that each hair bundle is composed of individual hairs that are also called stereocilia, and that adjacent stereocilia are linked together by protein filaments, also known as tip links.

As the stereocilia sway, the tip links stretch, which momentarily rips open a transduction channel that allows positively charged ions to stream into the hair cell. This initiates a neurotransmitter release that eventually reaches the nervous system.

In this manner, a mechanical action is converted into an electrical signal, and eventually something we hear as a chirp, beep, or voice.

"The system is incredible. But we still don't really know what constitutes the links, and we don't know how the hair bundle operates at the molecular level," says Auer.

Auer and colleagues have so far dissect the hair bundle at the molecular level using electron tomography, reconstructed the hair-bundle links in three dimensions, and obtained highly accurate length measurements of the links, down to the molecular scale.

"One of the holy grails in structural cell biology is obtaining a molecular inventory of complex systems, and showing how the proteins work together to achieve their marvelous function. We're striving to develop such an inventory for the hair bundle," says Auer.

The researchers say that their study enables them to decipher just how the ear adapt to an extremely loud noise, and then quickly reconfigure itself to detect a whisper; and how can it be sensitive enough to detect the whisper, but not so sensitive that it detects every molecule colliding against the eardrum.

"If the system were any more sensitive, you would hear all of the molecules in the air bumping onto your ear drum, and go crazy," says Auer, adding that their recently obtained images are the first in a series of electron tomography explorations of hair cells.

"We know a good deal about how a hair bundle operates through clever electrophysiology experiments, but we need to know more, and for that we need to determine its molecular structure. Ultimately, we will get a molecular representation of this entire bundle, with all of its machinery, which will give us a fundamental insight into how the bundle works - and how hearing really works," says Auer

The research has been reported the Journal of the Association for Research in Otolaryngology.

Source: ANI
RAS/L
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
International Day of Persons with Disabilities 2021 - Fighting for Rights in the Post-COVID Era
Effect of Blood Group Type on COVID-19 Risk and Severity
Woman with Rare Spinal Cord Defect from Birth Sues Doctor
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Diet and Nutrition Tips for Athletes 

Recommended Reading
Presbycusis
Presbycusis (age related hearing loss) is the gradual loss of hearing that occurs as people get ......
Tinnitus
Tinnitus is the perception of ringing, hissing, or other sound within the ears when no ......
Anatomy of Ear and Hearing - Animation
Ear converts sound waves into electrical impulses that are transmitted to the temporal lobe of the ....
'Dancing' Hair Cells Linked to Acute Hearing
St. Jude Children's Research Hospital investigators in their new study have shown how 'dancing' ......
Diet and Nutrition Tips for Athletes
Athletes can be physically fit by consuming a well balanced nutritious diet, which keeps them mental...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use