Pioneering Clinical Practice Live Implementation Proves Effectiveness of Medial EarlySign's AI-Based Tool to Identify Patients at High Risk of Having Colorectal Cancer

Tuesday, April 17, 2018 Cancer News
Email Print This Page Comment bookmark
Font : A-A+

Maccabi Health Services Completes Real-World AI Tool Study; Finds More Than 8% of Flagged Patients Subsequently Diagnosed* with Cancer or Precancerous Lesions

KFAR MALAL, Israel, April 17, 2018 /PRNewswire/ -- Medial EarlySign (, a leader in machine-learning

(ML) based solutions to improve disease management, today announced the publication of successful results for the live, physician-supported implementation of its solution for aiding in earlier colorectal cancer detection, in new research published by the Journal of Oncology CCI.

According to the study, the solution examined medical records of 79,000 adult Maccabi members who had not been compliant with colorectal cancer (CRC).  From these, 688 men and women were identified as higher risk for CRC and recommended for further evaluation. Doctors of flagged individuals were notified and asked to follow up with their patients. Of these, 254 had colonoscopies performed by Maccabi physicians, and 19 colorectal cancers were found, as well as 22 with advanced adenomas (high-risk precancerous lesions). An additional 15 cancers primarily identified outside of the Maccabi system were also found through national cancer registry code matching.

The peer-reviewed study, conducted with leading Israeli integrated delivery network Maccabi Health Services (MHS), outlines the success of Medial EarlySign's model, which used only the simple parameters of age, gender and complete blood count (CBC) results. Whereas Maccabi's study found cancers/advanced adenomas in 8.1% of flagged individuals, general population colonoscopies return a positive (presence of cancer) result in just 0.1-0.2% of cases.

The goal of the implementation was to increase earlier detection of cancer among members resisting screening by using advanced ML-based technology to find signs of the disease in routine EHR data. The results show that this technology can successfully provide such a safety net in clinical practice. 

"What is particularly encouraging about these results is that they have been achieved in a real-world setting, where physicians were asked to follow through on the flagged patients. They did, and now these individuals can be treated appropriately," said Varda Shalev, MD, Head of the Maccabi Institute for Research & Innovation (Maccabitech). "It is noteworthy that these results were similar to the findings of our simulations and previous studies. We have found this solution to be very effective for us both clinically and financially."

"The implementation of machine-learning based algorithms to risk stratify populations at risk is commonly feared by many clinicians and population health managers as a hard-to-trust black box.  In collaboration with Maccabi, we have shown for the first time that given the correct set-up of clinical leadership and top-notch technology, obstacles and hurdles can be overcome," said Dr. Ran Goshen, Chief Medical Officer of Medial EarlySign.

In addition to CRC, Medial EarlySign's machine learning and mathematical models (AlgoMarkers™) help healthcare organizations confront challenges they face with other medical conditions (including lower GI disorders, diabetes, kidney disease and other life-threatening conditions) and identify patient subpopulations who may benefit from interventions or may be at high risk. The company's solutions are already in clinical practice, with additional studies involving data of more than 20 million patients in 14 leading institutions around the world.  

About Medial EarlySign

Medial EarlySign's advanced AI-based algorithm platform helps healthcare organizations accurately stratify populations to optimize care for individuals and potentially prevent or delay serious health conditions, by leveraging routine and lab test results and common EHR data. The company creates actionable opportunities for better clinical decision making and, early intervention to improve patient outcomes, focus financial resources, and reduce overall costs. Medial EarlySign is developing a suite of AlgoMarker™ stratification models to address a variety of illnesses including cancers, diabetes and associated complications and other life-threatening conditions. The company's platform has been supported by peer-reviewed research published by internationally recognized health organizations and hospitals. Founded in 2009, Medial EarlySign is headquartered in Kfar Malal, Israel. For more information, please visit

Follow Medial EarlySign on LinkedIn: Medial EarlySign and Twitter: @MedialEarlySign

Media Relations Contact:Ellie HansonFinn Partners


Cision View original content:

SOURCE Medial EarlySign

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
* Your comment can be maximum of 2500 characters
I agree to the terms and conditions

News A - Z


News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Press Release Category

Press Release Archive

Stay Connected

  • Available on the Android Market
  • Available on the App Store