Okayama University Research: Measuring ion Concentration in Solutions for Clinical and Environmental Research

Wednesday, June 27, 2018 Research News
Email Print This Page Comment bookmark
Font : A-A+

OKAYAMA, Japan, June 27, 2018 /PRNewswire/ --

Okayama University researchers describe in the journal Optics Express

the use of Terahertz (THz) chemical microscopy to measure the pH of water-based solutions with a volume as small as 16 nL. The findings are important to be able to measure pH concentrations in small-volume solutions for clinical and environmental analyses.

     (Photo: https://mma.prnewswire.com/media/711874/Microsolution_Wells_Okayama_University.jpg )

For clinical and environmental research and monitoring it is important to be able to measure pH concentrations in small-volume solutions. However, conventional systems used to measure the concentration of ions require the use of reference electrodes that end up reducing the volume of the solution, setting a limit on the minimum volume that it is possible to analyze.

Now, Dr. Toshihiko Kiwa and colleagues at the Graduate School of Natural Science and Technology in Okayama University, Japan, demonstrated the use of Terahertz (THz) chemical microscopy to measure the pH of water-based solutions with a volume as small as 16 nL. The results are published in Optics Express. This type of microscope has a sensing plate with patterned micro wells hosting the solution; an ultrafast laser pulse directed on the sensing plate generates a photocurrent with ultrafast modulation that, in turn, emits THz radiation into free space. Because the amplitude of the THz radiation depends on the concentration of ions in the micro wells, this method opens up the possibility of imaging the concentration of ions without the need of using electrodes. This enables the measurement of volumes of solution that would be too small for conventional methods.

The THz chemical microscope, which was developed by this same group in 2007, features a semiconducting (silicon) thin film mounted on a sapphire substrate that acts as the sensing plate. A layer of oxide naturally forms on the silicon film, providing an insulating layer between the silicon surface and the solution. The researchers added a resin on top of the oxide layer and used conventional photolithographic techniques to pattern micro wells in it, obtaining wells with a volume of 16 nL. They also optimized the laser pulses to stabilize the signal, and integrating this method into the microscope is part of the next steps the researchers intend to take.

Thinking about the future directions the team is interested to explore, the author says that "we will attempt the integration for multi-ion sensing and reducing the laser spot size to improve the accuracy of THz chemical microscopy."

About Okayama University 

Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 13,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences.

Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.

Website: http://www.okayama-u.ac.jp/index_e.html

Correspondence to 

Associate Professor Toshihiko Kiwa, Ph.D.

Advanced Electro Measurement Technology Laboratory,

Graduate School of Interdisciplinary Science and Engineering

in Health Systems, Okayama University,

3-1-1 Tsushimanaka, Kita-Ku, Okayama 700-8530, Japan

kiwa@okayama-u.ac.jp

http://www.ec.okayama-u.ac.jp/~sense/index.html

Further information Okayama University 1-1-1 Tsushima-naka , Kita-ku , Okayama 700-8530, Japan Public Relations and Information Strategy E-mail: www-adm@adm.okayama-u.ac.jp

Website: http://www.okayama-u.ac.jp/index_e.html Okayama Univ. e-Bulletin: http://www.okayama-u.ac.jp/user/kouhou/ebulletin/ About Okayama University (YouTube): https://www.youtube.com/watch?v=iDL1coqPRYI Okayama University Image Movie (YouTube): https://www.youtube.com/watch?v=KU3hOIXS5kk Reference  

Toshihiko Kiwa, Tatsuki Kamiya, Taiga Morimoto, Kenji Sakai, And Keiji Tsukada. pH measurements in 16-nL-volume solutions using terahertz chemical microscopy. Optics Express, 26(7), 8232-8238, 2018.

DOI: https://doi.org/10.1364/OE.26.008232

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-26-7-8232&id=383910

Reference (Okayama Univ. e-Bulletin): Associate Professor Kiwa's team 

e-Bulletin Vol.4?Unique terahertz chemical microscope for mapping chemical reactions

e-Bulletin Vol.10?Simple, compact, highly sensitive SQUID based magnetic field measurement sysytem to detection of a very small magnetic signals

e-Bulletin Vol.11?High-performance Terahertz Project kick-off symposium

e-Bulletin Vol.13?Terahertz chemical microscope: Innovative terahertz technology for high resolution mapping of chemical reactions, label free immunoassays, cosmetics research, and more.

SOURCE Okayama University



Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
* Your comment can be maximum of 2500 characters
I agree to the terms and conditions

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Press Release Category

Press Release Archive

Stay Connected

  • Available on the Android Market
  • Available on the App Store