Back of the Eye Disorders: Novel Drugs and Delivery Technologies, 2017-2030

Tuesday, June 26, 2018 Drug News
Email Print This Page Comment bookmark
Font : A-A+

LONDON, June 26, 2018 /PRNewswire/ -- INTRODUCTION According to the World Health Organization, close to 250 million

individuals, including 36 million blind people, presently suffer from some form of vision impairment. Further, a recent study published in September 2017 estimates that the number of blind people is likely to increase to
38.5 million, by 2020, and to 115 million, by 2050. Current projections also indicate that, in the US alone, the total economic burden related to vision loss is expected to reach approximately USD 715 billion by 2050. Download the full report: In fact, chronic eye diseases are considered to be one of the main causes of vision loss globally, and an estimated 90% cases of visual impairment are reported to be caused due to such conditions. It is worth highlighting that a significant portion of these chronic ophthalmological disorders are clinical conditions related to the back of the eye. The current treatment landscape for back of the eye disorders is characterized by the presence of blockbuster drugs, such as Lucentis® and Eylea®, and various other therapeutic options. Despite the success of these therapies, their invasive mode of administration, high dosage frequency and other drug related side effects, are some of the drawbacks that have an adverse impact on their therapeutic potential and adoption. Further, there are no treatment approaches available for a number of ophthalmological indications, such as dry age related macular degeneration (dry AMD), retinitis pigmentosa (RP) and leber congenital amaurosis. In order to overcome these challenges, various stakeholders are engaged in the development of novel therapeutic approaches. With the entry of several start-ups that are driving the innovation in this domain, the pipeline has several novel product candidates in various stages of development. Companies are steadily collaborating to develop and commercialize their products globally, in-license intellectual property to design new treatment modalities and advance research initiatives in this domain. SCOPE OF THE REPORT The 'Back of the Eye Disorders: Novel Drugs and Delivery Technologies, 2017-2030' report features an extensive study of the market for novel drugs, drug-device combinations and technologies for the treatment of back of the eye disorders. The focus of this study is on the applications and the likely evolution of novel treatment options (excluding steroids and corticosteroids) in the mid to long term. The evolving market has its hopes pinned on the efforts of multiple start-ups, small and large-sized companies. Amongst other elements, the report features: • A detailed assessment of the current market landscape of novel drugs, providing information on various drug / therapy developers, phase of development (clinical, preclinical or discovery stage) of product candidates, information on drug class, molecular target, type of therapy, mechanism of action, route of administration, and key therapeutic indication(s). In addition, we have provided a list of drug device combinations that target the back of the eye. • A world map representation, depicting the most active geographies in terms of the presence of companies developing drugs to treat back of the eye disorders. • A bull's eye analysis highlighting distribution of pipeline candidates in terms of phase of development, type of target and drug class. A grid analysis based on type of drug class developed / being developed across different indications and stages of development. • An elaborate discussion on lifecycle management strategies, depicting how companies are using various methods to expand patent exclusivity in order to exploit the revenue generation potential of their proprietary products. • Comprehensive profiles of clinical stage (phase II/III and above) drug candidates specifically targeting back of the eye disorders, highlighting their current status of development, mechanism of action, technology, patent portfolio, clinical trial information and recent developments. • A review of currently available technologies and delivery systems that are being used to administer therapeutics to the back of the eye, featuring brief profiles of the various technical advances, key benefits offered and information on the product candidates pipeline that are based on these technologies. • A discussion on various visual prosthesis that are available, highlighting their mechanism of action. In addition, we have provided a comparative 2X2 analysis of the different types visual prosthesis based on supplier power and product competitiveness. • An analysis of the partnerships that have been established in the recent past, covering R&D collaborations, license agreements, mergers and acquisitions, manufacturing and services agreements, and other relevant agreements. • A discussion on the key promotional strategies that have been adopted for marketing approved drugs, namely (based on the approval year) Macugen®, Lucentis®, Eylea® and Jetrea®, that are presently prescribed to treat back of the eye disorders. One of the key objectives of the report was to understand the primary growth drivers and estimate the future size of the market. Based on various parameters, such as target patient population, likely adoption rates and expected pricing, we have provided an informed estimate on the likely evolution of the market in the short to mid-term and long term, for the period 2017-2030. To account for the uncertainties associated with the development of novel drugs and to add robustness to our model, we have provided three forecast scenarios, portraying the conservative, base and optimistic tracks of the market's evolution. The opinions and insights presented in the report were also influenced by discussions held with senior stakeholders in the industry. These include Elise Brownell (Senior Vice President of Operations and Project Management, Amarantus Bioscience), Quinton Oswald (President and CEO, Neurotech Pharmaceuticals) and Samantha Cobb (CEO, AdAlta). All actual figures have been sourced and analyzed from publicly available information forums and primary research discussions. Financial figures mentioned in this report are in USD, unless otherwise specified. RESEARCH METHODOLOGY The data presented in this report has been gathered via secondary and primary research. For all our projects, we conduct interviews with experts in the area (academia, industry, medical practice and other associations) to solicit their opinions on emerging trends in the market. This is primarily useful for us to draw out our own opinion on how the market will evolve across different regions and technology segments. Where possible, the available data has been checked for accuracy from multiple sources of information. The secondary sources of information include • Annual reports • Investor presentations • SEC filings • Industry databases • News releases from company websites • Government policy documents • Industry analysts' views While the focus has been on forecasting the market over the coming 13 years, the report also provides our independent view on various technological and non-commercial trends emerging in the industry. This opinion is solely based on our knowledge, research and understanding of the relevant market gathered from various secondary and primary sources of information. CHAPTER OUTLINES Chapter 2 is an executive summary of the insights captured in our research. The summary offers a high-level view on the likely evolution of the back of the eye disorders market in the short-mid and long term. Chapter 3 features a discussion on the general concepts related to the structure of the human eye, primarily focusing on the various disorders associated with the back of the eye. It provides information on the static, dynamic and metabolic barriers that have a significant impact on drug delivery to the back of the eye. The chapter also features a discussion on the different routes used to administer drugs into the eye. In addition, it covers details on the available treatment options (drug classes that have been approved or are currently under development) and drug delivery approaches for back of the eye disorders. Chapter 4 includes information on over 175 therapeutics that are currently approved or are in different stages of development. It features a comprehensive analysis of the pipeline molecules, highlighting the drug developer, target indication, phase of development, drug class, type of therapy, mechanism of action and route of administration. In addition, it features a schematic representation on a world map, highlighting the key regional hubs developing therapeutics for the treatment of back of the eye disorders. Further, we have provided a logo landscape of product developers in North America, Europe and the Asia Pacific region on the basis of employee base. The chapter also features a comprehensive grid analysis of the various therapeutic product candidates, highlighting their respective target indications, drug class and phases of development. Chapter 5 includes a detailed discussion on product life cycle management strategies that are being considered by developers of approved drugs. It focuses on the development and commercialization related strategies, which are being used extensively by drug developers to treat back of the eye disorders. Chapter 6 contains detailed profiles of drugs that are in advanced stages of clinical development (phase II/III and above). Each profile provides information on the current status of development, mechanism of action, technology, patent portfolio, clinical trial information and recent developments. Chapter 7 presents a comprehensive market forecast, highlighting the future potential of the market till 2030. Based on various parameters, such as target patient population, likely pricing and adoption (driven by clinical efficacy and safety data), we have estimated the evolution of the market over the coming 10-15 years. The chapter provides detailed segmentation of overall opportunity based on drug classes (antibody based therapeutics, fusion proteins, peptides, small molecules, oligonucleotides and others), indications (wet AMD, dry AMD, DME, DR, LHON, Stargardt disease and others), mechanism of action (anti-angiogenesis, anti-inflammatory, complement pathway inhibition, functional protein production, visual cycle modulation and others) and route of administration (intravitreal, topical, oral, subcutaneous and others). Chapter 8 provides details on the technology platforms and drug delivery systems that have been developed to address the challenges posed by the current treatment approaches in this space. It includes brief profiles of those drug delivery technologies / platforms that are being developed for multiple drug candidates in the clinical stage. Each profile provides information on the developer, key advantages, release profile, type of molecule and technology pipeline. In addition, the chapter highlights the various ocular implants / drug device combinations that are either approved or being developed to target back of the eye disorders. Chapter 9 highlights the bionic vision technology / visual prostheses, which are designed to restore vision in visually impaired patients. It includes information on the various bionic eye technologies that are either approved or currently in various stages of development for the treatment of back of the eye disorders, specifically RP and wet AMD. It also presents a comparative 2 X 2 matrix analysis of bionic vision technologies, based on parameters, such as phase of development, site of implantation, targeted indications and unique characteristics of these technologies. Chapter 10 features an elaborate discussion and analysis of the various collaborations and partnerships that have been inked amongst players in this market. We have also discussed the different partnership models (including product development and commercialization, R&D agreements, technology / product licensing agreements, other licensing agreements, mergers / acquisitions and clinical trial collaborations) and the most common forms of deals / agreements that have been established between 2013 and 2017 (including both the years). Chapter 11 highlights the key promotional strategies that are being implemented by the developers of marketed products, such as Macugen®, Lucentis®, Eylea® and Jetrea®. For the purpose of this analysis, we studied the promotional activities undertaken by the developers of the aforementioned drugs. The promotional aspects covered in the chapter include details provided on the product website (covering key messages for patients and healthcare professionals), patient support offerings and informative downloadable content. Chapter 12 provides a detailed analysis, capturing the key parameters and trends that are likely to influence the future of the back of the eye disorders market within the biopharmaceutical industry, under a comprehensive SWOT framework. Chapter 13 summarizes the overall report. In this chapter, we have provided a list of key takeaways from the report, and expressed our independent opinion related to the research and analysis described in the previous chapters. Chapter 14 is a collection of interview transcripts of the discussions that were held with key stakeholders in this market. The chapter provides details of interviews held with Elise Brownell (Senior Vice President of Operations and Project Management, Amarantus Bioscience), Quinton Oswald (President and CEO, Neurotech Pharmaceuticals) and Samantha Cobb (CEO, AdAlta). Chapter 15 is an appendix, which provides information on drugs that have been discontinued over time. Chapter 16 is an appendix, which provides tabulated data and numbers for all the figures provided in the report. Chapter 17 is an appendix, which provides the list of companies and organizations mentioned in the report. EXAMPLE HIGHLIGHTS 1. Over 170 product candidates are currently under various stages of development for a diverse range of back of the eye disorders. Eight drugs are commercially available; of these, Lucentis® and Eylea® have already achieved blockbuster status. Nearly 40% of the pipeline molecules are under clinical development; specifically, 1 product candidate is in the pre-registration stage, 8 molecules are being investigated in phase III and phase II/III, 24 molecules in phase II, 27 molecules in phase I/II and 11 molecules in phase I clinical trials. Majority (56%) of the product candidates are still in the preclinical and discovery stages. 2. Gene therapy has emerged as one of the key drug classes being investigated across various phases of development. One such product candidate, LUXTURNA™, received approval from the USFDA for the treatment of patients with confirmed biallelic RPE65 mutation IRD in late 2017. Other important drug classes in this domain include small molecules (20%), antibody based therapeutics (12%), cell therapies (8%) and peptides / proteins (8%). 3. 41% of the products in the pipeline are designed to treat age-related macular degeneration. Nearly 20% of the molecules are being developed for the treatment of diabetes associated eye disorders, such as diabetic macular edema and diabetic retinopathy. In addition, close to 14% of the molecules are under development for the treatment of retinitis pigmentosa, followed by Leber Hereditary Optic Neuropathy (5%) and Stargardt disease (3%). The remaining 17% of the pipeline molecules are being developed for treating posterior uveitis, Usher syndrome and other retinal dystrophies. 4. Majority of product candidates (29%) in the clinical pipeline target various components of the anti-angiogenesis pathway. Most of the approved drugs (57%) also follow this particular mechanism of action. A significant number of molecules (18%) are being developed against various isoforms of VEGF; these molecules are designed to either target VEGF alone or in combination with other molecular targets. 5. The market landscape is characterized by the presence of large-sized (20), mid-sized (21) and small-sized companies (69). Some of the prominent large-sized companies engaged in this domain include (in alphabetical order) AbbVie, Chengdu Kang Hong Pharmaceuticals, Genentech, Novartis, Pfizer, Regeneron Pharmaceuticals and Valeant Pharmaceuticals. Similarly, mid-sized companies that are actively contributing to the development of back of the eye disorders include (in alphabetical order) Acucela, Mitotech, Molecular Partners, Novelion Therapeutics, Quark Pharmaceuticals, Stealth Biotherapeutics and ThromboGenics. In addition, small companies, such as (in alphabetical order) Amyndas Pharmaceuticals, ElsaLys Biotech, Envisia Therapeutics, Exonate, GenSight Biologics, Ichor Therapeutics, InFlectis BioScience, Nightstar Therapeutics, Ocugen, Recursion Pharmaceuticals, SanBio and Vision Medicines are also actively involved in this domain. 6. To overcome the challenges related to the effective delivery of drugs to the back of the eye, several innovative technologies are also being developed. Notable examples of advanced drug delivery technologies include (in alphabetical order) BioSeizer (Taiwan Liposome Company), Durasert™ (pSivida), Encapsulated Cell Therapy (Neurotech), EyeCET Platform Technology (Eyevensys), EyeGate II® Delivery System (EyeGate Pharma), Ocular Drug Delivery System (GrayBug Vision), Oculis Platform Technology (Oculis), Replenish Posterior MicroPump™ (Replenish), SCS™ Microinjector (Clearside Biomedical), and Verisome Technology (Icon Bioscience). 7. Given the increase in technological advancements, rise in the aging population across the globe and the unmet across multiple ophthalmological disorders, we anticipate the opportunity to steadily grow in the foreseen future. In fact, specific products, being developed for indications with very large target patient populations, are anticipated to achieve blockbuster status (sales over USD 1 billion) and become prime contributors to future revenues.Download the full report: About Reportbuyer Reportbuyer is a leading industry intelligence solution that provides all market research reports from top publishers For more information: Sarah Smith Research Advisor at Email: Tel: +1 (718) 213 4904 Website:

Cision View original content:

SOURCE ReportBuyer

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
* Your comment can be maximum of 2500 characters
I agree to the terms and conditions

News A - Z


News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Press Release Category

Press Release Archive

Stay Connected

  • Available on the Android Market
  • Available on the App Store