DNA-based Detection of Heavy Metals

by Medindia Content Team on  February 17, 2007 at 3:01 PM Research News   - G J E 4
DNA-based Detection of Heavy Metals
Researchers at the University of Illinois at Urbana-Champaign have developed a simple, disposable sensor for detecting hazardous uranium ions, with sensitivity that rivals the performance of much more sophisticated laboratory instruments.

The sensor provides a fast, on-site test for assessing uranium contamination in the environment, and the effectiveness of remediation strategies, said Yi Lu, a chemistry professor at Illinois and senior author of a paper accepted for publication in the Proceedings of the National Academy of Sciences, and posted on its Web site.

While most DNA is double stranded, the catalytic DNA Lu's research group uses has a single strand region that can wrap around like a protein. In that single strand, the researchers fashion a specific binding site -- a kind of pocket that can only accommodate the metal ion of choice.

In this case, the researchers chose to detect uranyl, the most soluble species of uranium ion and the one that poses the greatest threat to human life.

To search for the unique sequence of DNA that could distinguish uranyl from other metal ions, the researchers used a combinatorial approach called in vitro selection. Simple and cost-effective, the selection process can sample a very large pool of DNA (up to 1,000 trillion molecules), amplify the desired sequence by the polymerase chain reaction, and introduce mutations to improve performance.

Lu, with collaborators at Illinois, the Construction Engineering Research Laboratory, Oregon State University and Oak Ridge National Laboratory, assembled the uranium sensor and tested it on soils containing varying amounts of uranium.

The presence of uranyl causes catalytic cleavage of the DNA and release of the fluorophore, resulting in a dramatic increase of fluorescence intensity. With a detection sensitivity of 11 parts per trillion, the disposable sensor rivaled the performance of much more sophisticated laboratory instruments.

"This latest success demonstrates that our methodology can be used to make cost-effective sensors for other hazardous metals, as well, with extremely high sensitivity and selectivity," Lu said. "We can also construct sensor arrays that detect and quantify many metal ions simultaneously."

Source: Bio-Bio Technology

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

View All