A Study Explores the Medical Potentials of Bucky Amino Acids

by Medindia Content Team on  January 5, 2007 at 7:07 PM Research News   - G J E 4
A Study Explores the Medical Potentials of Bucky Amino Acids
A New research published in the Jan. 10 issue of the American Chemical Society's journal Nano Letter, by Rice University chemists and North Carolina State University toxicologists, finds that repetitive movement can speed the uptake of nanoparticles.

This research was based on the In-Vitro experiments involving animal skin that was exposed to buckyball-containing amino acids. "Our results confirm that repetitive motion can speed the passage of nanoparticles through the skin."

'Bucky amino acid' penetrates faster, deeper when skin is flexed and penetration was also found to be deeper after 24 hours than after just eight - said Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State.

"As more nanoparticles find their way into the workplace and consumer goods, and as scientists look for innovative ways to use nanoparticles to delivery drugs into the body, it is critical that the nanoscience community identify these types of external exposure factors."

In the study, solutions of buckyball-containing amino acids were placed on small sections of pigskin. In some experiments, the skin was held still, and in others it was flexed for either an hour or an hour and a half. Measurements were taken eight hours after exposure and 24 hours after exposure.

Buckyballs are spherical, soccer-ball-shaped molecules containing 60 carbon atoms. The buckyballs used in the study were part of an innovative molecule called Bucky amino acid, or Baa, that was created in the lab of Rice chemist Andrew Barron. Baa is a marriage of buckyballs and phenylalanine, one of the 20 essential amino acids that are the building blocks of all proteins.

"The findings were a bit surprising because the Bucky amino acids tend to form spherical clusters that are up to 12 times larger in diameter than the known width of intercellular gaps in the skin," said Barron, the Charles W. Duncan Jr.-Welch Professor of Chemistry, professor of materials science and associate dean for industry interactions and technology transfer.

He added: "It's not clear why flexing increases the uptake of fullerene peptides, but it will be important to further investigate these mechanisms as we study the medical potential of Bucky amino acids."

Source: Eurekalert

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

View All