Medindia

X

Swimming Devices Similar to Size of Cells Could Deliver Drugs Inside the Body

by Dr. Trupti Shirole on  December 4, 2015 at 6:20 PM Medical Gadgets   - G J E 4
Tiny spherical bead-like devices that can be guided by physical structures while swimming inside fluids have been designed by engineers at the University of Sheffield. This discovery opens up a wealth of future possibilities, such as using structures in the body to guide drug delivery, or cracks in rocks to direct environmental clean-up and exploration.
 Swimming Devices Similar to Size of Cells Could Deliver Drugs Inside the Body
Swimming Devices Similar to Size of Cells Could Deliver Drugs Inside the Body
Advertisement

These devices, which are a similar size to cells and bacteria - around a hundredth of the average diameter of a strand of human hair - could be used to deliver drugs to a specific location inside the body or outside of the body to diagnose diseases in blood samples. Examples include finding proteins indicating cardiac problems or looking for circulating tumor cells that can indicate the spread of cancer.

‘Tiny spherical bead-like devices - which are a similar size to cells and bacteria - that can be guided by physical structures while swimming inside fluids have been developed by engineers. These devices could be used to deliver drugs to a specific location inside the body or outside of the body to diagnose diseases in blood samples.’
Advertisement
When working with devices on a micron scale, it's very challenging to produce motion from moving parts due to the properties of the fluid - it's similar to humans trying to run through treacle. Previous research has focused on using external magnetic fields to guide the devices, but this requires constant observation so that the device can be guided manually.

The research conducted at Sheffield uses a new method, giving the devices a catalytic coating on one side, which creates a chemical reaction when fuel molecules are added, causing the device to move automatically on a pre-determined route, using natural structures as a guide.

Dr. Stephen Ebbens, Department of Chemical and Biological Engineering at Sheffield, said, "When you're dealing with objects on such a small scale, we found that although our method of moving the devices using a coating and chemical reaction worked very effectively, it was difficult to control its direction, due to other molecules in the fluid jostling it. We've been working on ways to overcome this and control the movement of the devices along a path using physical structures to direct them. We are now working on applications for using these devices in the body, in the shorter term focusing on using them for medical diagnosis."

In addition to medical applications, these devices could be used in other fields, such as to locate indicators of contamination in environmental samples or to deliver neutralizing chemicals to areas affected by oil spills, by using crevices in rocks as the structural guide.

Source: Eurekalert
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All