Surprising Role of 'Velcro Protein' Found in Cell Migration

by Himabindu Venkatakrishnan on  March 14, 2014 at 2:38 PM Research News   - G J E 4
The research team deleted the protein from normal mouse mammary cells in one experiment and watched what happened. Expecting the cells to completely disconnect and move out on their own into the surrounding gel, the researchers were surprised to find that most of the epithelial cells remained connected to each other, although their organization was disrupted. Some of the epithelial cells did penetrate the gel, but usually in single-file "columns" that remained connected to the tissue. A similar result was seen in live mice.
 Surprising Role of 'Velcro Protein' Found in Cell Migration
Surprising Role of 'Velcro Protein' Found in Cell Migration

"For tumor cells to metastasize, they have to begin interacting with the proteins outside of the tumor and eventually strike out on their own," says Eliah Shamir, a graduate student in Ewald's lab and lead author on the study. "When we deleted E-cadherin, the epithelial cells began interacting more with proteins in the gel, but they didn't lose contact with the rest of the mammary tissue."

In a second set of experiments, the team turned on a gene called Twist1, which is thought to affect the activity of many genes needed to transform groups of stationary epithelial cells into independent, mobile cells. The result, they say, was dramatic. Within 24 hours of turning on Twist1, dozens of individual cells began to move past the epithelial boundary and into the gel beyond. Again, similar results were seen when the experiment was repeated in live mice.

Surprisingly, the researchers say that when they caused epithelial cells lacking E-cadherin to turn on Twist1, the cells were no longer able to escape into the gel as single cells. Instead, they created many "columns" of cells, which didn't detach from the mammary tissue. These results suggest that the single-celled detachment and migration induced by Twist1 actually requires the presence of E-cadherin — the Velcro protein that helps bind the cells together. "This finding is quite counterintuitive," Ewald says, "and we are eager to understand the biology behind it."

Since Twist1 is known to affect the activity of many genes, the researchers have begun to narrow down which of those genes is responsible for the cellular spread they witnessed. With that information, they hope to identify new means of preventing metastasis.

"Our goal is to improve outcomes for patients with metastatic breast cancer, and this work takes us one step closer to doing so," says Ewald.

Source: Eurekalert

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

View All