Study Finds Out How Protein That Plays Key Role in Cancer and Autoimmune Diseases is Activated

by Kathy Jones on  July 10, 2014 at 10:50 PM Research News
RSS Email Print This Page Comment bookmark
Font : A-A+

A new study has identified the process through which a complex protein that plays a crucial role in the development of cancer, viral infection and autoimmune diseases is activated.
 Study Finds Out How Protein That Plays Key Role in Cancer and Autoimmune Diseases is Activated
Study Finds Out How Protein That Plays Key Role in Cancer and Autoimmune Diseases is Activated

Jiazhen Zhang, a research student in Professor Sir Philip Cohen's laboratory at the University of Dundee, uncovered how the protein complex, called NF-κB, is activated. The results are published today in the Biochemical Journal.

NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) is a protein complex that controls transcription of DNA. NF-κB is found in almost all animal cell types and plays a key role in regulating the immune response to infection. Incorrect regulation of NF-κB has been linked to cancer, inflammatory, and autoimmune diseases, septic shock, viral infection, and improper immune development.

"NF-κB has been the subject of a vast amount of research for many years as it plays a critical role in inflammatory diseases and cancer," said Sir Philip. "It has been known for some time that the protein is activated by a kinase called IKKβ but there has been split opinion with regards to how the kinase itself is switched on."

"We have confirmed that another kinase, TAK1, is involved, but surprisingly it isn't sufficient to switch on IKKβ. Two other events need to happen in addition, namely the formation of an unusual type of ubiquitin chain and its attachment to IKKβ and then the addition of a second phosphate group on to IKKβ which remarkably is carried out by IKKβ itself. It is only then that IKKβ becomes competent to switch on NF-κB."

"This is complex biochemistry but working out the details of how proteins are switched on and off is how new ways to develop improved drugs to treat disease are identified. For example, the enzyme that makes the ubiquitin chains needed to activate IKKβ could now be targeted to develop a drug to treat inflammatory diseases."

The research was carried out in the Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU) at Dundee.

Peter Shepherd, Chair of the Biochemical Journal Editorial Board, said, "This signalling pathway is critical for a wide range of cellular responses, particularly stress responses. Understanding how this pathway is regulated is hugely important, and this paper finally clarifies one of the key steps in this process. This is important in not only understanding the disease process, but in the quest to develop new therapies that target this signalling pathway."



Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions

More News on:

Cancer and Homeopathy Chemotherapy Chemotherapy Drugs Cancer Facts Cancer Tattoos A Body Art Myasthenia Gravis Vitiligo Autoimmune Disorders Wegener’s Granulomatosis 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Stay Connected

  • Available on the Android Market
  • Available on the App Store

Facebook

News Category

News Archive