Stem Cells Linked to Cognitive Gain After Brain Injury: Study

by Bidita Debnath on  November 6, 2013 at 10:20 PM Research News
RSS Email Print This Page Comment bookmark
Font : A-A+

In the critical time window, a stem cell therapy previously shown to reduce inflammation after traumatic brain injury also promotes lasting cognitive improvement.
 Stem Cells Linked to Cognitive Gain After Brain Injury: Study
Stem Cells Linked to Cognitive Gain After Brain Injury: Study

This is according to preclinical research led by Charles Cox, M.D., at The University of Texas Health Science Center at Houston (UTHealth) Medical School.

The research was published in today's issue of STEM CELLS Translational Medicine.

Cellular damage in the brain after traumatic injury can cause severe, ongoing neurological impairment and inflammation. Few pharmaceutical options exist to treat the problem. About half of patients with severe head injuries need surgery to remove or repair ruptured blood vessels or bruised brain tissue.

A stem cell treatment known as multipotent adult progenitor cell (MAPC) therapy has been found to reduce inflammation in mice immediately after traumatic brain injury, but no one had been able to gauge its usefulness over time.

The research team led by Cox, the Children's Fund, Inc. Distinguished Professor of Pediatric Surgery at the UTHealth Medical School, injected two groups of brain-injured mice with MAPCs two hours after the mice were injured and again 24 hours later. One group received a dose of 2 million cells per kilogram and the other a dose five times stronger.

After four months, the mice receiving the stronger dose not only continued to have less inflammation—they also made significant gains in cognitive function. A laboratory examination of the rodents' brains confirmed that those receiving the higher dose of MAPCs had better brain function than those receiving the lower dose.

"Based on our data, we saw improved spatial learning, improved motor deficits and fewer active antibodies in the mice that were given the stronger concentration of MAPCs," Cox said.

The study indicates that intravenous injection of MAPCs may in the future become a viable treatment for people with traumatic brain injury, he said.

Cox, who directs the Pediatric Surgical Translational Laboratories and Pediatric Program in Regenerative Medicine at UTHealth, is a leader in the field of autologous and blood cord stem cells for traumatic brain injury in children and adults. Results from a Phase I study were published in a March 2011 issue of Neurosurgery, the journal of the Congress of Neurological Surgeons. Cox also directs the Pediatric Trauma Program at Children's Memorial Hermann Hospital.

Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions

Related Links

More News on:

Stem Cells - Cord Blood Parkinsons Disease Stem Cells - Fundamentals Parkinsons Disease Surgical Treatment Genetics and Stem Cells Brain Brain Facts Ataxia Bone Marrow Transplantation Tissue Engineering and Regenerative Medicine 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Advertisement
Find a Doctor

Stay Connected

  • Available on the Android Market
  • Available on the App Store

Facebook

Advertisement

News Category

News Archive