Spinal Cord Injury Victims may Benefit from Stem Cell Transplantation Studies: Study

by Sheela Philomena on  October 19, 2014 at 1:47 PM Organ Donation News
RSS Email Print This Page Comment
Stem cell transplantation may be an effective treatment option for spinal cord injury (SCI), say researchers.
 Spinal Cord Injury Victims may Benefit from Stem Cell Transplantation Studies: Study
Spinal Cord Injury Victims may Benefit from Stem Cell Transplantation Studies: Study

Using laboratory rats modeled with SCI, researchers in Spain found in laboratory tests on cells harvested from rats - specifically ependymal progenitor cells (epSPCs), multipotent stem cells found in adult tissues surrounding the ependymal canal of the spinal cord - responded to a variety of compounds through the activation of purinergic receptors P2X4, P2X7, P2Y1 and P2Y4. In addition, the epSPCs responded to adenosine triphosphate (ATP) through this activation. ATP, a chemical produced by a wide variety of enzymes that works to transport energy within cells, is known to accumulate at the sites of spinal cord injury and cooperate with growth factors that induce remodeling and repair.

"The aim of our study was to analyze the expression profile of receptors in ependymal-derived neurospheres and to determine which receptors were functional by analysis of intercellular Ca2+ concentration," said study co-author Dr. Rosa Gomez-Villafuertes of the Department of Biochemistry at the Veterinary School at the University of Complutense in Madrid, Spain. "We demonstrated for the first time that epSPCs express functional ionotropic P2X4 and P2X7 and metabotropic P2Y1 and P2Y4 receptors that are able to respond to ATP, ADP and other nucleotide compounds."

When they compared the epSPCs from healthy rats to epSPCs from rats modeled with SCI, they found that a downregulation of P2Y1 and an upregulation of P2Y4 had occurred in the epSPCs in the SCI group.

"This finding opens an important avenue for potential therapeutic alternatives in SCI treatments based on purinergic receptor modulation," the researchers concluded.



Source: Eurekalert

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
* Your comment can be maximum of 2500 characters
Notify me when reply is posted
I agree to the terms and conditions

Related Links

More News on:

Athletes Foot Stem Cells - Cord Blood Stem Cells - Fundamentals Parkinsons Disease Surgical Treatment Genetics and Stem Cells Spondylolisthesis Back Pain at Workplace: Prevention and Exercises Bone Marrow Transplantation Tissue Engineering and Regenerative Medicine Transplantation 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Stay Connected

  • Available on the Android Market
  • Available on the App Store

Facebook

News Category

News Archive