Researchers Shed Light on Why Some Cancers Progress and Spread Faster Than Others

by Kathy Jones on  November 10, 2013 at 10:13 PM Cancer News
RSS Email Print This Page Comment
The way in which a reduction in mitochondrial DNA content leads human breast cancer cells to take on aggressive, metastatic properties has been described by researchers.
 Researchers Shed Light on Why Some Cancers Progress and Spread Faster Than Others
Researchers Shed Light on Why Some Cancers Progress and Spread Faster Than Others
Advertisement

The work has broken new ground in understanding why some cancers progress and spread faster than others and may offer clinicians a biomarker that would distinguish patients with particularly aggressive forms of disease, helping personalize treatment approaches.

Advertisement
Mitochondria, the "powerhouses" of mammalian cells, are also a signaling hub.

They are heavily involved in cellular metabolism as well as in apoptosis, the process of programmed cell death by which potentially cancerous cells can be killed before they multiply and spread. In addition, mitochondria contain their own genomes, which code for specific proteins and are expressed in coordination with nuclear DNA to regulate the provision of energy to cells.

To gain an understanding of the mechanism that connects low mtDNA levels with a cellular change that leads to cancer and metastasis, Penn School of Veterinary Medicine's Manti Guha, a senior research investigator, and Narayan Avadhani,and their colleagues set up two systems by which they could purposefully reduce the amount of mtDNA in a cell.

One used a chemical to deplete the DNA content, and another altered mtDNA levels genetically. They compared normal, non-cancer-forming human breast tissue cells with cancerous breast cells using both of these treatments, contrasting them with cells with unmanipulated mtDNA.

The differences between cells with unmodified and reduced mtDNA levels were striking, the researchers found. The cells in which mtDNA was reduced had altered metabolism and their structure appeared disorganized, more like that of a metastatic cancer cell.

Even the non-tumor-forming breast cells became invasive and more closely resembled cancer cells. Significantly, cells with reduced mtDNA became self-renewing and expressed specific cell surface markers characteristic of breast cancer stem cells.

The study has been published in the journal Oncogene.

Source: ANI
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
* Your comment can be maximum of 2500 characters
Notify me when reply is posted
I agree to the terms and conditions

More News on:

Cancer Common Lifestyle Habits that Cause Diseases Health Benefits of Dandelion Plant 
Advertisement

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Advertisement

Advertisement
Advertisement

Stay Connected

  • Available on the Android Market
  • Available on the App Store

Facebook

News Category

News Archive