Medindia LOGIN REGISTER
Medindia

Researchers Restore Missing Protein in Muscular Dystrophy Patients

by Kathy Jones on Aug 21 2014 8:48 PM

 Researchers Restore Missing Protein in Muscular Dystrophy Patients
Researchers at University and the University Hospital of Basel have successfully managed to restore a protein that was missing in the skeletal muscle of patients with muscular dystrophy, a new study published in the journal Science Translational Medicine reveals.
When muscle cell membranes are damaged, the repair protein dysferlin is activated and reseals muscle membrane tears. If this repair protein is altered due to a genetic mutation, the body's own "quality control" system (the so called proteasome) identifies the protein as being defective and eliminates it. Without dysferlin, injured muscle cell membranes cannot be repaired, which leads to progressive loss of skeletal muscle cells and thus to muscle wasting. It appears that the body's own quality control system neutralizes mutated dysferlin even if the mutation does not actually impair its repair function.

Repair protein reactivated

The research group led by Professor Michael Sinnreich at the Departments of Neurology and Biomedicine at the University and the University Hospital of Basel had previously demonstrated that proteasome inhibitors can reactivate mutated dysferlin proteins in cultured muscle cells from muscular dystrophy patients. The inhibition of the exaggerated cellular quality control enables the altered repair protein to regain its function and to repair damaged muscle membranes.

Now the team has translated these findings into clinical application and has, in a proof-of-principle study, restored the missing dysferlin protein in skeletal muscle of patients with muscular dystrophy. Three patients carrying a dysferlin mutation received a single systemic dose of a proteasome inhibitor. After only a few days the patients' musculature produced the missing dysferlin protein at levels that could be therapeutically effective.

Long-term trial planned

For Head of Research Michael Sinnreich, the new findings serve as groundwork for future long-term clinical trials: "These findings could be of importance for the treatment of patients with muscular dystrophy as well as other, previously incurable genetic diseases."

Advertisement


Source-Eurekalert


Advertisement