Advertisement

Most Popular News on Medindia

P
M

Research Sheds Light on HIV Antibodies That are Worth the Wait

by Kathy Jones on  March 30, 2013 at 9:05 PM AIDS/HIV News   - G J E 4
One promising strategy for an effective vaccine against HIV-1 focuses on designer antibodies that have much broader potency than most specific antibodies.
 Research Sheds Light on HIV Antibodies That are Worth the Wait

These broadly neutralizing antibodies (bNAbs) can handle the high mutation rate of HIV particles that makes normal, very specific antibodies useless within a short space of time. A study published by Cell Press on March 28th in the journal Cell reveals surprising mutations in these antibodies that are crucial for strong protection against HIV-1. The findings could guide efforts to design better HIV-1 vaccines.

"This study demonstrates a fundamental aspect of antibodies' function and development that was not fully appreciated before," says study author Ron Diskin of the Weizmann Institute of Science. "We show that it will be important to pay more attention to previously ignored regions of antibodies to design effective vaccines."

Scientists have recently found that some HIV-1-infected individuals produce bNAbs naturally several years after infection. Animal studies have shown that these antibodies are very effective at protecting against and controlling HIV-1 infection, but what makes them so effective was unknown. Antibodies are Y-shaped molecules, and most variation is found at the two tips of the Y, called the complementarity determining regions, where antibodies make direct contact with the virus. On the other hand, relatively few mutations have been found in framework regions (the bottom half of the Y), which maintain the structural integrity of the antibody. Until now, the role of framework region mutations had been unclear.

The study, led by Michel Nussenzweig of Rockefeller University and Pamela Bjorkman of the California Institute of Technology, has revealed that HIV-1-fighting bNAbs accumulate mutations in framework regions, in contrast to most antibodies. Surprisingly, these mutations strengthened the antibodies' antiviral activity while conserving key structural features. The researchers suggest that several years are required for infected individuals to produce these potent antibodies because it takes time for the right combination of various mutations to accumulate.

"Our study shows that the immune system has a variety of ways to make effective antibodies and that mutations in antibody framework regions, which are usually not changed when antibodies mutate to increase their efficacy, are required for anti-HIV antibodies," Bjorkman says. "This has clear implications for efforts to raise effective antibodies for the next generation of HIV vaccines."

Dr. Nussenzweig will be speaking at "What Will It Take To Achieve an AIDS-free World?"—the inaugural translational medicine conference on HIV research organized by Cell and the Lancet, which will bring the audiences and Editors of the Lancet and Cell together to bridge the gap between clinicians and researchers focused on understanding, managing, preventing, and curing HIV/AIDS. The meeting is in San Francisco on November 3-5, 2013. To view the program, submit an abstract, or register for the meeting, visit the website: translationalmedicine-lancet-cell.com/HIV/index.html.



Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

Ask an Expert

C
If you have a question about health related issues, you can now post it in our Ask An Expert section on our community website Medwonders.com and get answers from our panel of experts.
X

Ask an Expert

Ask an Expert+
s
Medicaid Expansion in Pennsylvania Could Generate...
 Medicaid Expansion in Pennsylvania Could Generate $2 Billion in Revenue to the State
S  Researchers Find Over 80 Mutations During Their Search for Cancer-Causing DNA Errors
Researchers Find Over 80 Mutations During Their S...