Now Convert Bore Water Into Drinking Water

by Bidita Debnath on  October 27, 2012 at 10:49 PM Research News   - G J E 4
In New Zealand, chemists have come up with an innovative method for treating bore water and converting it into safe drinking water.
 Now Convert Bore Water Into Drinking Water
Now Convert Bore Water Into Drinking Water

They're currently trialling the system known as PEFT or perforated electric flow through, on a Waikato farm, as a low-cost solution for developing countries, where many people have limited access to clean and affordable water.

Alan Langdon, associate professor and post-doctoral researcher Hilary Nath, from the University of Waikato, decided to try using electrochemistry to remove the iron and manganese prevalent in bore water from Waikato's peaty soils.

The residues give the water its typical browny-orange colour, and generally make it undrinkable without expensive treatment using aerators, filters, ion exchangers and tanks, according to a Waikato statement.

Researchers came up with a simple system that uses electric current passing between two perforated titanium electrodes to turn naturally occurring chloride ions in the water into chlorine.

The chlorine then oxidises and precipitates out the metal contaminants, and also disinfects the water passing through the system, making it safe to drink. Best of all, the whole system can be powered by a car battery.

The researchers noticed that the closer together the two electrodes were positioned, the higher the electric field generated between them. And the higher the electric field, the more potent the chlorine being produced.

The two together were so powerful they could kill bugs in the water at much lower chlorine levels than normally required - the electric field was able to puncture the membrane of a bug making it 100 times more susceptible to the disinfecting effect of the chlorine.

At slightly higher applied voltages the PEFT cell can also disinfect water by the electric field alone, with no need to produce any chlorine.

"By bringing the electrodes closer together than anyone else has been able to we can reduce electrical resistance and consume less power," said Nath.

"And because the flow path through the cell is very short, we can achieve good water flow at modest pressure."

A prototype will be on show at the University of Waikato stand at Equidays next month.

Langdon and Nath are now testing the prototype, and getting good results - they've seen total oxidation of iron during their trial.

"The initial focus will be disinfection of harvested rain water, disinfection of water supplies derived from surface water and bore water contaminated with iron - we need to be very sure our technology is robust before contemplating overseas markets, particularly in developing nations," added Nath.

Source: IANS

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

View All