Medindia

X

Novel Mechanism That Could Lead to Therapies for Amyotrophic Lateral Sclerosis

by Dr. Trupti Shirole on  October 5, 2016 at 10:05 PM Research News   - G J E 4
Amyotrophic Lateral Sclerosis (ALS) also known as Lou Gehrig's disease, is a fatal neurodegenerative disease that causes death of motor neurons, which control voluntary muscles. Progressive weakness and paralysis due to muscle atrophy lead to difficulty in speaking, swallowing and eventually breathing. The disease typically starts between ages 40 and 60, and the average survival from onset to death is two to five years.
 Novel Mechanism That Could Lead to Therapies for Amyotrophic Lateral Sclerosis
Novel Mechanism That Could Lead to Therapies for Amyotrophic Lateral Sclerosis
Advertisement

Researchers from Ben-Gurion University of the Negev (BGU) have published a new study that describes a novel molecular mechanism that could lead to the development of new therapies for ALS. The study was published online in the prestigious PNAS (Proceedings of the National Academy of Sciences of the United States of America).

‘A novel molecular mechanism that could lead to the development of new therapies for amyotrophic lateral sclerosis (ALS) has been described by researchers.’
Advertisement
The cause of ALS is not known in about 90% of cases, but approximately 10% are genetically inherited. Approximately 20% of these genetic cases are caused by mutations in the SOD1 gene (superoxide dismutase), which lead to the accumulation of "misfolded" SOD1 proteins that provoke selective killing of motor neurons.

"Correct protein folding is critically important, which is why we are focusing on the diverse set of complex cellular mechanisms, including molecular chaperones, that promote efficient folding and prevent toxicity," says Dr. Adrian Israelson, who heads the Cellular and Molecular Neurodegeneration Lab in the BGU Department of Physiology and Cell Biology.

For the first time, this study reported that "endogenous multifunctional protein macrophage migration inhibitory factor (MIF)," a gene that regulates cell inflammation and immunity, acts as a chaperone for misfolded SOD1 in a mouse model. The researchers demonstrated that completely eliminating MIF in a mutant SOD1 mouse model of familial ALS increased misfolded SOD1 accumulation. This also accelerated disease onset and late disease progression and shortened the lifespan of mice expressing mutant SOD1.

"This study provides insight into the potential therapeutic role of MIF in suppressing the selective accumulation of misfolded SOD1 in ALS by modulating MIF levels," Dr. Israelson says.

Source: Newswise
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All