Novel Antibiotics Identification Becomes Faster with Computational Methods

by Preethi Sivaswaamy Mohana on  January 23, 2018 at 5:44 PM Drug News
RSS Email Print This Page Comment bookmark
Font : A-A+

An algorithmic computational method can be used to discover novel variants of known antibiotics, which could be a boon to fight antibiotic resistance. The algorithm, VarQuest developed by the American and Russian computer research team searches through huge databases to identify the variants within a short time. The findings of the study are reported in the journal Nature Microbiology.
Novel Antibiotics Identification Becomes Faster with Computational Methods
Novel Antibiotics Identification Becomes Faster with Computational Methods

In just a few hours, the algorithm identified 10 times more variants of peptidic natural products (PNPs) than all previous PNP discovery efforts combined. Previously, such a search might have taken hundreds of years of computation, said Hosein Mohimani, assistant professor in Carnegie Mellon University's Computational Biology Department.

"Our results show that the antibiotics produced by microbes are much more diverse than had been assumed," Mohimani said. VarQuest found more than a thousand variants of known antibiotics, he noted, providing a big picture perspective that microbiologists couldn't obtain while studying one antibiotic at a time.

Mohimani and Pavel A. Pevzner, professor of computer science at the University of California, San Diego, designed and directed the effort, which included colleagues at St. Petersburg State University in Russia.

PNPs have an unparalleled track record in pharmacology. Many antimicrobial and anticancer agents are PNPs, including the so-called "antibiotics of last resort," vancomycin and daptomycin. As concerns mount regarding antibiotic drug resistance, finding more effective variants of known antibiotics is a means for preserving the clinical efficacy of antibiotic drugs in general.

The search for these novel variants received a boost in recent years with the advent of high-throughput methods that enable environmental samples to be processed in batches, rather than one at a time. Researchers also recently launched the Global Natural Products Social (GNPS) molecular network, a database of mass spectra of natural products collected by researchers worldwide. Already, the GNPS based at UC San Diego contains more than a billion mass spectra.

The GNPS represents a gold mine for drug discovery, Mohimani said. The VarQuest algorithm, which employs a smarter way of indexing the database to enhance searches, should help GNPS meet its promise, said he added.

"Natural product discovery is turning into a Big Data territory, and the field has to prepare for this transformation in terms of collecting, storing and making sense of Big Data," Mohimani said. "VarQuest is the first step toward digesting the Big Data already collected by the community."



Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions

Related Links

More News on:

MRSA - The Super Bug Antibiotics Eye Infections Natural Antibiotics to Fight Bacterial Infections Vancomycin-Resistant Enterococci (VRE) Boils - Treatment by Drugs Multiple Drug Allergy Syndrome Interaction of Antibiotics with Dairy Products 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive

Loading...