New X-Ray Technique Identifies Fibers That Maintain Regular Heart Rhythm

by Kathy Jones on  May 1, 2012 at 6:38 PM General Health News   - G J E 4
Using a new 3D X-ray technique, researchers from University of Liverpool have managed to identify tissue fibers in the heart that make sure that the heart muscles beat in a regular rhythm.
 New X-Ray Technique Identifies Fibers That Maintain Regular Heart Rhythm
New X-Ray Technique Identifies Fibers That Maintain Regular Heart Rhythm

The new 3D images could further understanding of how the body's heartbeat can be disturbed, which may help medics develop ways to reduce the risk of fibrillation - a condition in which heart muscle contracts chaotically and fails to pump blood rhythmically around the body.

The heart needs to pump blood in a regular rhythm to maintain a steady circulation of blood to all parts of the body. It does this through the coordinated action of the muscle tissue, that pumps the blood, and the conducting tissue, which is necessary to distribute an electrical wave to trigger every heartbeat. Until now scientists have been unable to produce high resolution 3D images of the conducting tissue to fully identify the network that controls heart rhythm.

The team at Liverpool used a micro CT scanner to image hearts that had been treated with iodine to highlight the different parts of the tissue. They found that the solution was absorbed less significantly by the conducting parts of the heart compared to the muscular parts of the organ, allowing scientists to clearly identify the areas that produce electrical activity on the resulting 3D image.

Dr Jonathan Jarvis, from the University's Institute of Ageing and Chronic Disease, said: "These new anatomically-detailed images could improve the accuracy of future computer models of the heart and help us understand how normal and abnormal heart rhythms are generated. 3D imaging will give us a more thorough knowledge of the cardiac conduction system, and the way it changes in heart disease.

"Computer models based on these high-fidelity images will help us to understand why the heart rhythm is vulnerable to changes in heart size, blood supply, or scarring after a heart attack. One of the major concerns for surgeons in repairing malformed hearts, for example, is to avoid damage to the tissue that distributes electrical waves. If they had access to 3D images of the conducting tissues in malformed hearts, however, it could be possible to understand where the conducting tissue is likely to be before they operate."

Source: Eurekalert

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

View All