Medindia LOGIN REGISTER
Medindia
New Drug-Eluting Method To Reduce Joint Implant Infection

New Drug-Eluting Method To Reduce Joint Implant Infection

by Julia Samuel on Jul 19 2017 2:22 PM
Listen to this article
0:00/0:00

Highlights

  • Delivering antibiotics to an infected prosthetic joint is challenging because of the limited supply of blood to the area.
  • Implants made from an antibiotic-releasing //polymer successfully eliminated two types of prosthetic infection in animal models.
  • Antibiotic-releasing polymer successfully eliminated the infection, compared to an implantation of a drug-release bone cement spacer.
Infection after a joint replacement surgery is of major concern as it affects up to 30,000 people each year in the U.S. Arthroplasty is a surgery that is performed for joint complications arising from osteoarthritis, injury, or fracture of the knee, hip, shoulder, wrist, or elbow.
It improves and revives the full functionality of the bone joints which may be affected by arthritis, juvenile arthritis, injury, or a fracture.  Arthroplasty of the existing bones involves reforming the bone structure or using artificial implants or prostheses. The artificial implants are made with materials, such as ceramics, metals, and polymers. These biomaterials are compatible with human cells and body tissues.

Most infections involving total joint replacement prostheses require a two-stage surgery, in which the patient's daily activities are largely compromised for four to six months. Delivering antibiotics to an infected prosthetic joint is challenging because of the limited supply of blood to the area.

A team of Massachusetts General Hospital (MGH) investigators has developed an antibiotic-releasing polymer that may greatly simplify the treatment of prosthetic joint infection.

In their recent report published in Nature Biomedical Engineering, the researchers describe how implants made from this material successfully eliminated two types of prosthetic infection in animal models.

Orhun Muratoglu, PhD, director of the Harris Orthopedics Laboratory in the MGH Department of Orthopedic Surgery, a co-author of the report said, "Our finding that polyethylene, the most commonly used weight-bearing surface in total joint surgery, can be made to safely and effectively release antibiotics implies that fully weight-bearing implants made with this material could be used to treat infection in a single procedure, reducing both the inconvenience and the risk of complications for patients."

Standard Treatment for Infection in Prosthetic Joints

Advertisement
The standard treatment for prosthetic joint infection involves removal of the implant and adjacent infected tissues and placement of a temporary spacer made from antibiotic-releasing bone cement that remains within the joint space for at least six weeks and sometimes for as long as six months.

During that time, the patient's movement may be significantly restricted, depending on the involved joint. In a second surgery, a new prosthesis is implanted, using antibiotic-releasing bone cement. But patients still can be at risk for recurrent infection, which may lead to the need for permanent joint fusion or amputation and has a 10-15 percent mortality rate.

Advertisement
Antibiotic-releasing bone cement has several limitations. Its ability to release an effective antibiotic dose may be brief, lasting little more than a week, and increasing the antibiotic content reduces the material's durability. In addition, some antibiotics with desirable qualities cannot be incorporated into a bone cement.

Polymer That Releases Antibiotics

For the current study, the research team - including lead author Jeremy Vincentius Suhardi, a Harvard/MIT MD/PhD student, and senior author Ebru Oral, PhD, both of the Harris Lab - designed and developed an antibiotic-releasing polymer that could be incorporated into the implant itself.

Vancomycin is an antibiotic used to treat a number of bacterial infections. Vancomycin is indicated for the treatment of serious, life-threatening infections by Gram-positive bacteria unresponsive to other antibiotics.

It is recommended intravenously as a first-line treatment for complicated skin infections, bloodstream infections, endocarditis, bone and joint infections, and meningitis caused by methicillin-resistant S. aureus. 

Based on mathematical and statistical models, the material they developed contained antibiotic clusters which were irregularly shaped, making them able to release effective drug doses over extended periods of time without compromising the strength of the material.

Implants made from this polymer were tested in animal models of prosthetic joint infection produced either by injecting a Staph. aureus-containing solution into the prosthesis or implanting a titanium rod covered with a Staph.

Aureus biofilm, a coating of bacteria that is particularly difficult to treat. In both situations, the antibiotic-releasing polymer successfully eliminated the infection, while implantation of a drug-release bone cement spacer was not effective.

"We used two separate infection models because, when patients present with prosthetic joint infection symptoms, it is not clear what proportion of bacteria may be in a biofilm and what are free floating in solution," says Muratoglu.

"The ability of our devices to eradicate all bacteria in the joints in both models strongly suggests they would be successful against both types of periprosthetic infection."

Benefits of the Treatment

A professor of Orthopedic Surgery at Harvard Medical School, Muratoglu notes that, in addition to speeding the recovery of patients and reducing the chance of complications, the elimination of a second surgical procedure should reduce overall costs.

He adds that the successful development of devices like these implants relies on an institutional "ecosystem," involving scientists, engineers and surgeons who can identify a problem, form hypotheses and strategies, and develop and test materials to meet the challenges.

The team is now working with the Food and Drug Administration and other regulatory agencies to pursue necessary approvals and develop this material into clinical products.

Reference
  1. Orhun Muratoglu et al., A fully functional drug-eluting joint implant, Nature Biomedical Engineering (2017) http://dx.doi.org/10.1038/s41551-017-0080.


Source-Medindia


Advertisement