Medindia

X

Muscular Diseases: The Trigger

by Dr. Enozia Vakil on  January 28, 2014 at 3:01 PM Research News   - G J E 4
The elasticity of the protein titin is believed to be responsible for various muscular diseases; however, the whether the changes are a cause or an effect is yet to be known. A study in The Journal of General Physiology helps solve this "chicken or the egg" conundrum and identifies a key player in determining titin's size and stiffness.
 Muscular Diseases: The Trigger
Muscular Diseases: The Trigger
Advertisement

Titin is an enormous protein that functions as a molecular spring responsible for the passive elasticity of muscles. It is composed of many individually folded protein domains—including repeating immunoglobulin-like (Ig) domains—that unfold when the protein is stretched and refold when tension is removed.

Advertisement
A team led by researchers from the University of Arizona used a mouse model lacking nine titin Ig domains to investigate the effects of a small increase in titin stiffness. The mutant mice showed a slight curvature of the spine (commonly associated with skeletal muscle disorders), atrophy of the soleus muscle in the leg, atrophy of the diaphragm, and changes in muscle contractility.

In analyzing the mutant mice, the researcher were surprised to observe that in the soleus, which contains one of the largest forms of titin in adult striated muscle, the increase in passive stress was much greater than expected from the loss of only nine Ig domains. And the mutant mice underwent additional changes in titin splicing to produce much smaller, stiffer forms of titin than anticipated. These results indicate that increasing titin's stiffness can be a trigger for—rather than the result of—pathological changes in skeletal muscles.

Further investigation revealed that titin's increased stiffness was caused by an abundance of the splicing factor RBM20 in the mutant mice. Mice created by crossing the mutants with a mouse with decreased RMB20 activity failed to show these additional changes in titin splicing. The results indicate that RMB20 plays a crucial role in determining titin's size and elasticity and could therefore be a possible avenue for modulating the protein in the treatment of various muscular diseases.



Source: Eurekalert
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All