Medindia LOGIN REGISTER
Medindia

Mother Cells Pass on DNA Damage to Offspring

by Julia Samuel on May 18 2017 5:23 PM

Mother Cells Pass on DNA Damage to Offspring
Some dividing human cells pass on low-level DNA damage to offspring, causing daughter cells to pause in a quiescent, or dormant, state previously thought to be random in origin.
The process occurs even among genetically identical cells grown under identical, optimal conditions, said CU Boulder Assistant Professor Sabrina Spencer, principal investigator on the study.

"We have linked DNA damage in mother cells to the fate of daughter cells in the subsequent cell cycle," said Spencer of the Department of Chemistry and Biochemistry.

"The study shows that entry into this quiescent state is not random, but rather is influenced by a 'memory' of events that occurred in the previous generation or generations."

Several years ago, Spencer developed a new technology using fluorescent biosensors that allow her team to identify, isolate and characterize quiescent cells in real time.

With the ability to dynamically track changes in such cells, it may now be possible to determine to what extent a "bypass" of the quiescent state by cells in the presence of stress could be a precursor or even a hallmark of cancer, she said.

"Such findings could contribute to the development of biomarkers to identify cancer cells that may be particularly sensitive to chemotherapeutic agents due to their inability to enter quiescence in response to stress," the team wrote in Cell Press.

Advertisement
The fact that mother cells are passing on DNA damage to their offspring was a surprising finding because the researchers expected mother cells would repair their own damage before dividing into daughter cells, said Spencer.

"In our world and the cellular world, we would think mothers would deal with their problems and not pass them on to their offspring," Spencer said. "Clearly this is not happening in many of the cells we have studied."

Advertisement
The new study also may have implications for aging since some quiescent daughter cells with unrepaired DNA damage may move into a senescent state - essentially the loss of a cell's power to undergo division and growth, said Spencer.

Source-Eurekalert


Recommended Readings
Advertisement