Medindia

X

Malaria Parasites Infecting RBCs Revealed by Laser Optical Tweezers

by Himabindu Venkatakrishnan on  August 20, 2014 at 3:14 PM Tropical Disease News   - G J E 4
Malaria parasite invades one red blood cell after another and is life threatening. However, very little is known about this infection process as it occurs very quickly, potentially explaining why there is currently no approved malaria vaccine.
 Malaria Parasites Infecting RBCs Revealed by Laser Optical Tweezers
Malaria Parasites Infecting RBCs Revealed by Laser Optical Tweezers
Advertisement

In a study published by Cell Press August 19th in the Biophysical Journal, researchers used a tool called laser optical tweezers to study interactions between the disease-causing parasite and red blood cells. The findings reveal surprising new insights into malaria biology and pave the way for the development of more effective drugs or vaccines for a disease that affects hundreds of millions of people around the world.

Advertisement
"Using laser tweezers to study red blood cell invasion gives us an unprecedented level of control over the whole process and will help us to understand this critical process at a level of detail that has not been possible before," says senior study author Julian Rayner of the Wellcome Trust Sanger Institute.

Rayner and Cicuta also used optical tweezers to measure how strongly the parasites adhere to red blood cells. They discovered that attachment is probably mediated by multiple weak interactions, which could potentially be blocked by a combination of drugs or antibodies. Moreover, the team used the technique to shed light on how three different invasion-inhibiting drugs affect interactions between the parasites and red blood cells.

Taken together, the findings show that optical tweezers are a powerful tool for studying malaria biology and drug mechanisms at the single-cell level. "We now plan to apply this technology to dissect the process of invasion and understand what genes and proteins function at what step," Rayner says. "This will allow us to design better inhibitors or vaccines that block invasion by targeting multiple steps at the same time."

Source: Eurekalert
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All