Medindia LOGIN REGISTER
Medindia

New Hybrid Neuro Chip Helps To Record Brain Cell Activity With Higher Resolution

by Dr. Meenakshy Varier on Oct 26 2016 8:53 PM
Listen to this article
0:00/0:00

Highlights

  • Brain functions can be understood in greater depth, only by recording the activity of brain cells called neurons.
  • Conventional neuro chips allow recording the activities of neurons for only a short-period.
  • The new hybrid neuro chip helps to amplify brain signals easily and at a higher resolution and for a longer duration.
A new technology has been developed by University of Calgary researchers, known as a bionic hybrid neuro chip. This technology records activity in animal brain cells for weeks at a much higher resolution.
Brain functions are controlled by millions of brain cells called neurons.

But in order to understand how the brain controls functions, such as simple reflexes or learning and memory, recording the activity of large networks and groups of neurons is necessary.

Conventional methods have allowed scientists to record the activity of neurons for only minutes.

The technological advancement was published in the journal Scientific Reports this month.

"These chips are 15 times more sensitive than conventional neuro chips," says Naweed Syed, PhD, scientific director of the University of Calgary, Cumming School of Medicine's Alberta Children's Hospital Research Institute, member of the Hotchkiss Brain Institute and senior author on the study. "This allows brain cell signals to be amplified more easily and to see real time recordings of brain cell activity at a resolution that has never been achieved before."

The development of this technology will allow researchers to investigate and understand in greater depth, in animal models, the origins of neurological diseases and conditions such as epilepsy, as well as other cognitive functions such as learning and memory.

Advertisement
"Recording this activity over a long period of time allows you to see changes that occur over time, in the activity itself," says Pierre Wijdenes, a PhD student in the Biomedical Engineering Graduate Program and the study's first author. "This helps to understand why certain neurons form connections with each other and why others won't."

The cross-faculty team created the chip to mimic the natural biological contact between brain cells, essentially tricking the brain cells into believing that they are connecting with other brain cells.

Advertisement
As a result, the cells immediately connect with the chip, thereby allowing researchers to view and record the two-way communication that would go on between two normal functioning brain cells.

"We simulated what mother-nature does in nature and provided brain cells with an environment where they feel as if they are at home," says Syed. "This has allowed us to increase the sensitivity of our readings and help neurons build a long-term relationship with our electronic chip."

While the chip is currently used to analyze animal brain cells, this increased resolution and the ability to make long-term recordings is bringing the technology one step closer to being effective in the recording of human brain cell activity.

"Human brain cell signals are smaller and therefore require more sensitive electronic tools to be designed to pick up the signals," says Colin Dalton, Adjunct Professor in the Department of Electrical and Computer Engineering at the Schulich School of Engineering and a co-author on this study. Dalton is also the Facility Manager of the University of Calgary's Advanced Micro/nanosystems Integration Facility (AMIF), where the chips were designed and fabricated.

Researchers hope the technology will one day be used as a tool to bring personalized therapeutic options to patients facing neurological disease.

Source-Medindia


Recommended Readings
Latest Health Watch
View All
Advertisement