Medindia

X

Memory-Related Brain Activity Loses Cohesion On Aging

by Julia Samuel on  November 24, 2016 at 2:03 PM Health Watch   - G J E 4
Highlights
  • Groups of brain regions with coordinated activity are consistent for individuals, but shrink with age.
  • Young people have large group of synchronized nerves which regulate brain activity while old people have smaller groups.
Certain regions in our brain operate together during memory tasks and become smaller and more numerous as people age, according to a study published in PLOS Computational Biology.
Memory-Related Brain Activity Loses Cohesion On Aging
Memory-Related Brain Activity Loses Cohesion On Aging
Advertisement

In a new study, Elizabeth Davison of Princeton University, New Jersey, and colleagues describe a novel method to characterize and compare the brain dynamics of individual people.

‘Regardless of whether a person is using memory, directing attention, or resting, the number of synchronous groups of connections within one brain is consistent for that person.’
Advertisement
The researchers used functional magnetic resonance imaging (fMRI) to record healthy people's brain activity during memory tasks, attention tasks, and at rest. For each person, fMRI data was recast as a network composed of brain regions and the connections between them. The scientists then use this network to measure how closely different groups of connections changed together over time.

They found that, regardless of whether a person is using memory, directing attention, or resting, the number of synchronous groups of connections within one brain is consistent for that person. However, between people, these numbers vary dramatically.

During memory specifically, variations between people are closely linked to age. Younger participants have only a few large synchronous groups that link nearly the entire brain in coordinated activity, while older participants show progressively more and smaller groups of connections, indicating loss of cohesive brain activity--even in the absence of memory impairment.

"This method elegantly captures important differences between individual brains, which are often complex and difficult to describe," Davison says. "The resulting tools show promise for understanding how different brain characteristics are related to behavior, health, and disease."

Future work will investigate how to use individual brain signatures to differentiate between healthily aging brains and brains with age-related impairments.

Source: Medindia
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All