Medindia

X

Harmful Greenhouse Gas Converted into a Tool for Making Pharmaceuticals

by Kathy Jones on  December 9, 2012 at 5:46 PM Drug News   - G J E 4
A way to transform a useless ozone-destroying greenhouse gas into a reagent for producing pharmaceuticals has been identified by a team of chemists at USC.
 Harmful Greenhouse Gas Converted into a Tool for Making Pharmaceuticals
Harmful Greenhouse Gas Converted into a Tool for Making Pharmaceuticals
Advertisement

The team will publish their discovery in a paper entitled "Taming of Fluoroform (CF3H): Direct Nucleophilic Trifluoromethylation of Si, B, S and C Centers," in the Dec. 7 issue of Science. The method is also being patented.

Advertisement
Because of the popularity of Teflon, which is used on everything from cooking pans to armor-piercing bullets, there's no shortage of its waste byproduct, fluoroform. Major chemical companies such as DuPont, Arkema and others have huge tanks of it, unable to simply release it because of the potential damage to the environment. Fluoroform has an estimated global warming potential 11,700 times higher than carbon dioxide.

But one man's trash is another man's treasure, and G.K. Surya Prakash—who has spent decades working with fluorine reagents—saw the tanks of fluoroform as an untapped opportunity.

Prakash, a professor of chemistry at the USC Dornsife College of Letters, Arts and Sciences and director of the USC Loker Hydrocarbon Research Institute, describes fluorine as "the kingpin of drug discovery." About 20 to 25 percent of drugs on the market today contain at least one fluorine atom.

Fluorine can be found in all different kinds of drugs, everything from 5-Fluorouracil (a widely used cancer treatment discovered by Charles Heidelberger at USC in the '70s) to Prozac to Celebrex.

"It's a small atom with a big ego," he said, referring to the fact that while fluorine is about the same size as a tiny hydrogen atom—so similar that living cells cannot tell the two elements apart—it is also extremely electronegative (that is, it has a strong attraction for electrons) making carbon-fluorine chemical bond quite strong, which improves the bioavailability of drugs made with fluorine.

Prakash led a team that included long-time colleague George A. Olah, distinguished professor of chemistry at USC Dornsife, and USC Research Associates, Parag V. Jog and Patrice T. D. Batamack.

The discovery was the product of many years of trial-and-error tests, hard work that the postdocs performed under Prakash's direction. Eventually, the team pinned down the precise conditions needed to coax the harmful fluoroform (CF3H) into useful reagents, including the silicon-based Ruppert-Prakash Reagent for efficient CF3 transfer. Fluoroform with elemental sulfur was also converted to trifluoromethanesulfonic acid, a widely used superacid one-hundred times stronger than sulfuric acid.

"In real estate, everything is 'location, location, location.' In chemistry, it is 'conditions, conditions, conditions,'" Prakash said.



Source: Eurekalert
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All