First Time - DNA Double-Strand Breaks Observed: CNIO Team

by Vani Pradeep on  December 9, 2014 at 11:43 AM Genetics & Stem Cells News
RSS Email Print This Page Comment
Font : A-A+

Scientists from Spanish National Cancer Research Centre (CNIO) have developed a method by which biological crystals are produced that help scientists to observe - for the first time - DNA double chain breaks. They have also developed a computer simulation that makes this process, which lasts in the order of millionths of a second, visible to the human eye. The study is published today by the journal Nature Structural & Molecular Biology.
First Time - DNA Double-Strand Breaks Observed: CNIO Team
First Time - DNA Double-Strand Breaks Observed: CNIO Team

"We knew that enzymes, or proteins, endonucleases, are responsible for these double strand breaks, but we didn't know exactly how it worked until now," said Montoya. "In our study, we describe in detail the dynamics of this basic biological reaction mediated by the enzyme I-Dmol. Our observations can be extrapolated to many other families of endonucleases that behave identically."

DNA breaks occur in several natural processes that are vital for life: mutagenesis, synthesis, recombination and repair. In the molecular biology field, they can also be generated synthetically. Once the exact mechanism that produces these breaks has been uncovered, this knowledge can be used in multiple biotechnological applications: from the correction of mutations to treat rare and genetic diseases, to the development of genetically modified organisms.

A SLOW-MOTION REACTION:

Enzymes are highly specialised dynamic systems. Their nicking function could be compared, said Montoya, to a specially designed fabric-cutting machine that "it would only make a cut when a piece of clothing with a specific combination of colours passed under the blade."

In this case, researchers concentrated on observing the conformational changes that occurred in the I-Dmol active site; the area that contains the amino acids that act as a blade and produces DNA breaks.

"By introducing a magnesium cation we were able to trigger the enzyme reaction and subsequently to produce biological crystals and freeze them at 200°C", said Montoya. "In that way, we were able to collect up to 185 crystal structures that represent all of the conformational changes taking place at each step of the reaction."

Finally, using computational analysis, the researchers illustrated the seven intermediate stages of the DNA chain separation process. "It is very exciting, because the elucidation of this mechanism will give us the information we need to redesign these enzymes and provide precise molecular scissors, which are essential tools for modifying the genome," he concluded.



Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions

More News on:

DNA Finger Printing Epigenetics 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Advertisement
Advertisement

Stay Connected

  • Available on the Android Market
  • Available on the App Store

Facebook

News Category

News Archive