Medindia

X

Chikungunya Mutation Places Several Continents at Risk of Epidemic: Study

by Bidita Debnath on  June 18, 2014 at 9:27 PM Research News   - G J E 4
Researchers of University of Texas Medical Branch at Galveston were able to predict further adaptations of the chikungunya virus that recently spread from Africa to several continents.
 Chikungunya Mutation Places Several Continents at Risk of Epidemic: Study
Chikungunya Mutation Places Several Continents at Risk of Epidemic: Study
Advertisement

It will likely result in even more efficient transmission and infection of more people by this virus strain. A key factor in a viruses' potential to sustain its circulation and ultimately cause disease is its ability to adapt to new host environments. The number and complexity of these adaptations is shaped by how hospitable the new host is to a certain virus.

Advertisement
Since 2005, 1 in 1,000 chikungunya virus infections has resulted in a fatal disease. "A typical infection involves very severe arthritic symptoms, leaving the sufferer severely afflicted by pain to the point where people can't work or function normally," said UTMB professor Scott Weaver, lead author of this paper that will be published in Nature Communications. "Chikungunya continues to be a major threat to public health around the world." A UTMB team previously found that a recently emerged lineage strain of the chikungunya virus has adapted itself to be hosted by not only the Aedes aegypti mosquito that lives mainly in the tropics but also to the Asian tiger mosquito, A. albopictus, which can currently be found on all continents except Antarctica.

This mutation in the Indian Ocean lineage occurred through a single adaptive change in the virus' genetic code that alters one protein in the envelope surrounding the virus. Their newest investigation analyzed recent events in chikungunya virus evolution that will aid in predicting future trends in transmission and circulation that determine epidemic potential. Weaver and his team found that the initial adaption provided the framework for a second wave of adaptations that can enable rapid diversification of viral strains and even more efficient transmission to people.

In addition, analysis of the chikungunya virus strain expressing a combination of the second-wave adaptive mutations revealed a similar pattern of changes and heightened adaptive qualities suggesting the future emergence of even higher transmission efficiency.

The researchers concluded that the Indian Ocean lineage of chikungunya virus that has spread to the Indian Ocean Basin, Southeast Asia, Oceania and Europe continues to mutate and adapt to develop higher efficiency for transmission by the Asian tiger mosquito. "Although a different chikungunya virus strain from the Asian lineage is now circulating in the Americas, the introduction of the Indian Ocean lineage could put temperate regions where A. albopictus thrives at risk for expansion of epidemic circulation," Weaver cautioned.

Source: Eurekalert
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All