Medindia LOGIN REGISTER
Medindia

Breast Cancer Damaged may be Assessed Using Space Technology

by Rajshri on Nov 5 2009 7:45 PM

Researchers have embarked on a study to assess if an imaging technique used by NASA to inspect the space shuttle can be used to predict tissue damage often experienced by breast cancer patients undergoing radiation therapy.

Researchers at Rush University Medical Center and Argonne National Laboratory are examining the utility of three-dimensional thermal tomography in radiation oncology.

Approximately 80 percent of breast cancer patients undergoing radiation treatment develop acute skin reactions that range in severity. The more severe reactions cause discomfort and distress to the patient, and sometimes result in treatment interruptions. The severity is quite variable among patients and difficult to predict.

"Because reactions usually occur from 10 to 14 days after the beginning of therapy, if we could predict skin reactions sooner we may be able to offer preventative treatment to maximize effectiveness and minimize interruption of radiation treatment," said Dr. Katherine Griem, professor of radiation oncology at Rush.

The researchers are studying if three-dimensional thermal tomography (3DTT) can detect the earliest changes that may trigger a skin reaction.

3DTT is a relatively new thermal imaging process that is currently being used as a non-invasive away to detect defects in composite materials.

The basic idea of thermal imaging is to apply heat or cold to a material and observing the resulting temperature change with an infrared camera to learn about its composition.

Advertisement
Unlike most thermal imaging studies, which have quantitative limitations, 3DTT measures the thermal effusivity of skin tissue. Thermal effusivity is a measure of a material's ability to exchange heat with its surroundings.

In this study, a flash of light is used to heat up the skin. An infrared camera captures a series of images over time that display the temperature of the skin, represented by colors. An algorithm developed by Argonne is used to calculate the temperature change and determine the thermal effusivity of different areas of the skin.

Advertisement
James Chu, PhD, chairperson of the section of medical physics at Rush said: "How quickly the skin cools is related to the structure underneath. Damaged skin cells have different effusivity values compared to that of healthy skin. By identifying the earliest changes in damaged tissue, we may be able to predict acute skin toxicities."

Preliminary data from the study show that marked decreases in thermal effusivity of irradiated skin occur well in advance of the development of high-grade skin reactions.

Dr. Alan Coon, chief resident of radiation oncology at Rush and primary author on the study, said: "Our initial data with radiation induced skin changes are quite encouraging," said

"In addition to finding decreases in effusivity of the treated areas many days before the development of skin reactions, we have also seen that the magnitude of these decreases varies with the grade of the reactions. This exciting result bodes well for the clinical utility of this technique in predicting the severity of a skin reaction before it occurs," Coon added.

The preliminary results from the study are being displayed during the American Society for Radiation Oncology (ASTRO) Annual Meeting in Chicago, being held from November 1 - 5, 2009.

Source-ANI
RAS


Advertisement