Medindia

X

Brain Shifts from Subdued to Alert Via Fight-or-Flight Chemical

by Kathy Jones on  June 22, 2014 at 8:10 PM Research News   - G J E 4
The brain cells surrounding a mouse's neurons do much more than fill space, claims a new study from The Johns Hopkins University.
 Brain Shifts from Subdued to Alert Via Fight-or-Flight Chemical
Brain Shifts from Subdued to Alert Via Fight-or-Flight Chemical
Advertisement

According to the researchers, the cells, called astrocytes because of their star-shaped appearance, can monitor and respond to nearby neural activity, but only after being activated by the fight-or-flight chemical norepinephrine. Because astrocytes can alter the activity of neurons, the findings suggest that astrocytes may help control the brain's ability to focus.

Advertisement
The study involved observing the cells in the brains of living, active mice over long periods of time. A combination of genetically engineered mice and advanced microscopy allowed the researchers to visualize the activity of astrocyte networks in different regions of the brain to learn how these abundant supporting cells are controlled.

The scientists monitored astrocytes in the area of the brain responsible for controlling movement and saw that the cells often increased their activity as the mice walked on treadmills — but not always, and sometimes astrocytes became active when the animals were not moving. This lack of consistency suggested to the researchers that the astrocytes were not responding to nearby neurons, as had been thought.

Similarly, astrocytes in the vision processing area of the brain did not necessarily become active when the mice were stimulated with light, but they were sometimes active, even in the dark. The team solved both mysteries when they tested the idea that the astrocytes needed a signal to "wake them up" before they could respond to nearby neurons. That is how they found that norepinephrine, the brain's broadly distributed fight-or-flight signal, primes the astrocytes in both locations to "listen in" on nearby neuronal activity.

"Astrocytes are among the most abundant cells in the brain, but we know very little about how they are controlled and how they contribute to brain function," says Dwight Bergles, Ph.D., professor of neuroscience, who led the study. "Since memory formation and other important functions of the brain require a state of attention, we're interested in learning more about how astrocytes help create that state."



Source: Eurekalert
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All