Medindia

X

An Unexpected Origin for Calming Immune Responses in the Gut

by Dr. Trupti Shirole on  June 14, 2016 at 6:39 AM Research News   - G J E 4
Inflammation is a key element of the body's nonspecific response to a threat, but if activated inappropriately, it can damage tissue, or lead to allergies and autoimmune disease.
 An Unexpected Origin for Calming Immune Responses in the Gut
An Unexpected Origin for Calming Immune Responses in the Gut
Advertisement

Throughout the body, white blood cells called regulatory T cells, or T regs, are tasked with calming the inflammatory response. But T regs are strangely absent in the thin lining of the gut - a place where one would expect to see lots of them, since immune responses need to be tightly controlled.

‘A class of potentially anti-inflammatory T cells, called intraepithelial (or IEL) CD4 cells, populates the lining of the gut, to calm down the immune cells.’
Advertisement
New research at The Rockefeller University described in Science explains how a specific set of immune cells in the gut originate to help maintain this equilibrium.

Co-corresponding author Bernardo Reis, a research associate in Daniel Mucida's Laboratory of Mucosal Immunity, said, "Instead another class of potentially anti-inflammatory T cells, called intraepithelial (or IEL) CD4 cells, populates this boundary. We found an unexpected connection between these two types of calming cells."

Their experiments revealed that some CD4 IELs arise from T regs that have traveled into the lining, or epithelium, of the gut.

The team, which included first author Tomohisa Sujino, co-authors Mariya London and David P. Hoytema van Konijnenburg from Mucida's lab, began by tracking the T regs within the epithelium and the tissue below in the gut of living mice. When they counted these immune cells by location they found a telling discrepancy: Many T regs migrated into the epithelium from the body, but never returned.

To find out what was happening to these immune cells, they labeled the T regs and watched them over five weeks. In that time, they found that about half of the T regs stopped expressing the protein Foxp3, an important marker of regulatory T cells. Of these, a portion converted to CD4 IELs. This is the first time T-regs have been shown to switch their identity and turn into another cell type within a living organism; until now, they have been thought to be stable.

The microbes living on the other side of the gut epithelium appear to contribute to this conversion. When the researchers treated mice with antibiotics, the T-regs stopped switching their identity.

"This research reveals how the gut has evolved its own specialized pathway for maintaining the delicate balance between an efficient immune response and the need for tolerance," says Mucida.

Source: Eurekalert
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All