Medindia

X

Understanding Anatomy of Membrane Proteins Could Lead to New Therapies

by Rajashri on  July 15, 2008 at 5:27 PM Research News   - G J E 4
 Understanding Anatomy of Membrane Proteins Could Lead to New Therapies
Researchers at Sydney's Centenary Institute have taken a major step towards developing new therapies by becoming the first team to map the anatomy of membrane proteins.
Advertisement

This breakthrough discovery may change the way we discover new drugs on its head and reduce the development time for new treatments.

Advertisement
"These membrane proteins are the target for 70% of all therapeutic drugs so an increased understanding of them is vital for future drug discoveries," Nature quoted Professor Mathew Vadas, Centenary Institute Executive Director, as saying.

According to Dr Mika Jormakka and his colleagues at UNSW, the knowledge about membrane protein structures may aid in the development of better treatments for diseases like cancer.

"The best way to imagine the way we currently discover new drugs is to think of a lock and key. The lock is the membrane protein that causes the body to respond to treatment and the key is the drug," explained Jormakka.

He added: "Up until recently we have never known what the lock looked like so we have to build thousands of keys (drugs) until we stumble upon one that fits. By mapping membrane proteins we are creating a map of the locks - this should make it much easier to design a key that fits."

"It is an exciting time to be working in structural biology as we are still very much at the start of the story. There are only around 70 membrane proteins out of a potential 10,000 that have ever been mapped."

"At Centenary, we are now trying to map membrane proteins that are involved in 'pumping' drugs out of cells thereby reducing the effectiveness of cancer chemotherapy agents and antibiotics among other drugs. By understanding how these membrane proteins work, we have the potential to eliminate the trial and error nature of patient treatment and to create targeted therapies."

The study is publishing this month in the prestigious international journal, Nature Structural and Molecular Biology.

Source: ANI
RAS/L
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All