Proteins Behind Efficacy Of ‘Spaced Learning’

by Gopalan on  June 19, 2011 at 5:49 AM Research News   - G J E 4
Learning distributed over a long period of time leaves behind a greater imprint on the mind, it is generally believed.
 Proteins Behind Efficacy Of ‘Spaced Learning’
Proteins Behind Efficacy Of ‘Spaced Learning’

Now Japanese researchers have found in mice experiments that proteins play a key role in the formation of long-term memories, thus providing the neurological basis of the rationale for spaced learning. The  findings of the scientists with Riken Brain Science Institute have been published in the Journal of Neuroscience.

The "spacing effect," first discovered over a century ago, describes the observation that humans and animals are able to remember things more effectively if learning is distributed over a long period of time rather than performed all at once. The effect is believed to be closely connected to the process of memory consolidation, whereby short-term memories are stabilized into long-term ones, yet the underlying neural mechanism involved has long remained unclear.

To clarify this mechanism, the researchers developed a technique based around the phenomenon of horizontal optokinetic response (HOKR), a compensatory eye movement which can be used to quantify the effects of motor learning. Studying HOKR in mice, they found that the long-term effects of learning are strongly dependent on whether training is performed all at once ("massed training"), or in spaced intervals ("spaced training"): whereas gains incurred in massed training disappeared within 24 hours, those gained in spaced training were sustained longer.

Earlier research suggested that this spacing effect is the product of the transfer of the memory trace from the flocculus, a cerebellar cortex region which connects to motor nuclei involved in eye movement, to another brain region known as the vestibular nuclei. To verify this idea, the team administered local anesthetic to the flocculus and studied its effect on learning. While learning gains in mice that had undergone one hour of massed training were eliminated, those in mice that had undergone the same amount of training spaced out over a four hour period were unaffected.

The researchers, however, found that the spacing effect was impaired when mice were infused with anisomycin and actinomycin D, antibiotics which inhibit protein synthesis - thus discovering the neurological basis of the benefits of spaced learning.

Source: Medindia

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

View All