Peptides Effective in Blocking HIV Entry into Cells Developed

by Medindia Content Team on  October 11, 2007 at 6:41 PM AIDS/HIV News
RSS Email Print This Page Comment
Peptides Effective in Blocking HIV Entry into Cells Developed
US researchers have developed new peptides that might be more efficient in preventing HIV than other drugs of the same class.
Advertisement

"Our 'D-peptides' offer several potential therapeutic advantages over existing peptide entry inhibitors, which are costly, require high dose injections, and suffer from the emergence of drug-resistance," said University of Utah biochemist Michael S. Kay.

Advertisement
"In contrast, our D-peptides resist degradation, so they have the potential to be administered by mouth and last longer in the bloodstream. Since these inhibitors have a unique inhibitory mechanism, they should work well in combination with existing HIV inhibitors," he added.

Writing about their work in the online edition of the Proceedings of the National Academy of Science, the researchers revealed that they were particularly interested in developing drugs to bind to an essential "pocket" structure found in all HIV strains.

Previous studies have already identified this essential structure as a promising drug target, using protein structures determined at the National Synchrotron Light Source (NSLS) at the U.S. Department of Energy's Brookhaven National Laboratory. However, several earlier attempts to target this pocket failed to produce potent and non-toxic pocket-specific entry inhibitors.

In the current study, the researchers used a high-throughput technique to screen a "library" containing hundreds of millions of peptides to identify the rare peptides, which would bind to the pocket structure and inhibit HIV entry.

Thereafter, the researchers analysed the structure of the most promising candidate peptides, using x-ray crystallography at the NSLS. They looked into how an extremely bright beam of x-rays, available only at synchrotron sources, bounces off and is refracted by the sample to determine the positions of individual atoms.

"These structures reveal details of how the peptides bind and guide the development of future inhibitors," said paper co-author Annie Heroux, a biologist and crystallography specialist at Brookhaven Lab.

This structure-assisted design led to the discovery of D-peptides with up to a 40,000-fold improved antiviral potency over previously reported D-peptides. The structures also suggest ways to engineer the peptides to reduce the chance of drug resistance.

Source: ANI
GAN
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
* Your comment can be maximum of 2500 characters
Notify me when reply is posted
I agree to the terms and conditions

More News on:

Oral Health And AIDS AIDS/HIV AIDS/HIV - Epidemiology AIDS/HIV - Clinical Features AIDS/HIV - Health Education AIDS/HIV - Prevention And Transmission AIDS / HIV - Treatment AIDS/HIV- Lab Tests and Faqs Parkinsons Disease Surgical Treatment Prostitution: Fresh Stakes in the Oldest Trade 
Advertisement

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Advertisement

Advertisement
Advertisement

Stay Connected

  • Available on the Android Market
  • Available on the App Store

Facebook

News Category

News Archive