Medindia

X

Malarial Parasite Growth can Now be Arrested With a New Method

by Savitha C Muppala on  May 21, 2009 at 10:38 PM Research News   - G J E 4
 Malarial Parasite Growth can Now be Arrested With a New Method
Researchers at the Johns Hopkins University School of Medicine have discovered a new way to arrest the growth of malarial parasite.

According to researchers, the new finding could guide the development of new malaria treatments.
Advertisement

"Our findings offer both a new potential molecular target for treating malaria and a compound that interacts at that target. These are important steps in discovering drugs that could help to treat malaria," said Jun O. Liu, Ph.D., a professor of pharmacology and molecular sciences

Advertisement
Liu's research team has for many years studied MetAP2 proteins, which are found in all organisms - from humans to single-celled bacteria - and essential for cell survival.

They reasoned that if the malaria parasite has its own MetAP2, finding a chemical that disrupts MetAP2 function may lead to a new drug to stop parasite growth and malaria spread.

So they searched a computer database of the sequence of the malaria parasite genome and found one protein very similar to human MetAP2, which they named PfMetAP2 for plasmodium falciparum, the parasite that causes malaria.

Recently other researchers reported that the natural antibiotic fumagillin can stop malaria parasites from growing, possibly by interfering with MetAP2.

But the man-made version of fumagillin causes brain cells to die, so Liu's team made several compounds chemically related to fumagillin in hopes of finding one less toxic but still effective in interfering with PfMetAP2.

They chose to further study one of these compounds, fumarranol, because it interacts with human MetAP2 and is less toxic to mice.

The team first tested whether fumarranol can stick to and interfere with PfMetAP2 by treating mouse cells containing PfMetAP2 with different amounts of fumarranol and fumagillin and comparing them to untreated cells. In treated cells, fumarranol stuck to PfMetAP2 and stopped it from working.

They next asked whether fumarranol could stop malaria parasites from growing in a culture dish. They treated both drug-resistant and multidrug-resistant strains of Plasmodium falciparum and found that fumarranol could stop the parasite from multiplying.

The researchers then gave mice infected with malaria fumarranol for four days after infection and measured the parasite load in the blood.

They found that after four days, fumarranol worked as well as fumagillin to slow infection. After another 26 days they again measured parasites in the blood, found that some mice carried no observable level of parasites and considered these animals cured.

"The next step for establishing a new treatment for malaria would be to test whether fumarranol is the most optimal treatment or if new compounds that are similar to fumarranol might be even more specific to malaria parasites," Liu said.

The research was published in the February 27 issue of Chemistry and Biology. (ANI)

Source: ANI
SAV
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All