Medindia

X

Human Brain is Far More Noisy Than a Computer

by Savitha C Muppala on  July 2, 2010 at 10:52 PM Research News   - G J E 4
The human brain, which is undoubtedly the most powerful computing device is noisy and unreliable, scientists revealed.

The study appears in the journal Nature.
 Human Brain is Far More Noisy Than a Computer
Human Brain is Far More Noisy Than a Computer
Advertisement

A long-standing hypothesis is that the brain's circuitry actually is reliable - and the apparently high variability is because your brain is engaged in many tasks simultaneously, which affect each other.

Advertisement
It is this hypothesis that the researchers at University College London tested directly. The team - a collaboration between experimentalists at the Wolfson Institute for Biomedical Research and a theorist, Peter Latham, at the Gatsby Computational Neuroscience Unit - took inspiration from the celebrated butterfly effect - from the fact that the flap of a butterfly's wings in Brazil could set off a tornado in Texas.

Their idea was to introduce a small perturbation into the brain, the neural equivalent of butterfly wings, and ask what would happen to the activity in the circuit. Would the perturbation grow and have a knock-on effect, thus affecting the rest of the brain, or immediately die out?

It turned out to have a huge knock-on effect.

The perturbation was a single extra 'spike', or nerve impulse, introduced to a single neuron in the brain of a rat. That single extra spike caused about thirty new extra spikes in nearby neurons in the brain, most of which caused another thirty extra spikes, and so on. This may not seem like much, given that the brain produces millions of spikes every second. However, the researchers estimated that eventually, that one extra spike affected millions of neurons in the brain.

Lead author Dr. Mickey London, of the Wolfson Institute for Biomedical Research, UCL, said: "This result indicates that the variability we see in the brain may actually be due to noise, and represents a fundamental feature of normal brain function."

This rapid amplification of spikes means that the brain is extremely 'noisy' - much, much noisier than computers.

Nevertheless, the brain can perform very complicated tasks with enormous speed and accuracy, far faster and more accurately than the most powerful computer ever built (and likely to be built in the foreseeable future).

The UCL researchers suggest that for the brain to perform so well in the face of high levels of noise, it must be using a strategy called a rate code. In a rate code, neurons consider the activity of an ensemble of many neurons, and ignore the individual variability, or noise, produced by each of them.

Now know we know that the brain is noisy, but we still don't know why.

The UCL researchers suggest that one possibility is that it's the price the brain pays for high connectivity among neurons (each neuron connects to about 10,000 others, resulting in over 8 million kilometres of wiring in the human brain).

Presumably, that high connectivity is at least in part responsible for the brain's computational power.

However, as the research shows, the higher the connectivity, the noisier the brain. Therefore, while noise may not be a useful feature, it is at least a by-product of a useful feature.

Source: ANI
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All