Medindia

X

How Household Bleach Kills Bacteria Explained

by Hannah Punitha on  November 16, 2008 at 5:43 PM Research News   - G J E 4
 How Household Bleach Kills Bacteria Explained
Researchers at the University of Michigan, Ann Arbor have discovered for the first time how bleach kills household bugs.
Advertisement

The boffins have explained in the November 14th issue of the journal Cell, a Cell Press publication that they have found the effect of hypochlorous acid, the active ingredient contained in bleach, causes the unfolding of proteins in bacteria in much the same was that heat stress or fever does.

Advertisement
Those denatured proteins then clump together irreversibly into a mass in living cells, similar to what happens to proteins when you boil an egg, according to the researchers.

The bacteria aren't totally defenseless, however. Under those circumstances, a protein chaperone called heat shock protein Hsp33 springs to action, protecting proteins from the aggregation effect and increasing the bacteria's bleach resistance. Protein chaperones are generally defined as proteins whose function is to help other proteins.

We found both in vitro and in vivo that bleach attacks proteins, said Ursula Jakob of the University of Michigan, Ann Arbor.

They lose structure much like they would under high temperature. Under those circumstances, the [Hsp33] protein is specifically activated to increase resistance, the expert added.

Jakob emphasized that this newly discovered mechanism is clearly one way bleach kills bacteria, but it may not be the only way.

Why would bacteria have a system specifically designed to deal with bleach?

Hypochlorous acid is an important part of host defense. It's not just something we use on our countertops, the researcher said.

In fact, the innate immune systems of mammals, and specifically immune cells known as neutrophils, release high concentrations of hypochlorous acid (aka bleach) upon recognizing microbial invaders. In addition, Jakob said, some evidence suggests that enzymes that produce bleach may help keep the bacteria in our guts in check.

The specific effects of hypochlorous acid on proteins help to explain why hydrogen peroxide is an inferior antimicrobial agent even though both chemicals are expected to act as strong oxidants, Jakob said.

Hydrogen peroxide doesn't do much for your countertops, she said, because it doesn't provoke these effects on proteins. Hsp33 also represents another example of an emerging concept in protein biology: that some proteins actually become activated through the act of partial unfolding. Indeed, chaperones react to stress by unfolding in the same way that other proteins do. Far from leaving them useless, however, that change in conformation is exactly what turns them on.

Usually, we think proteins need structure to be active, but here they must lose structure to be active, Jakob said.

The findings in bacteria could perhaps offer new insight into the damaging effects of bleach on our own proteins, she added, noting that hypochlorous acid produced by the immune system has been suspected to play a role in chronic inflammation.

Source: ANI
SPH
Advertisement

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

Advertisement
View All