High Radiation Dose Can Increase Survival Time For Brain Cancer Patients

by Gopalan on  July 25, 2010 at 10:47 AM Cancer News   - G J E 4
High doses of radiation targeting the stem cell niche in the brain can double the progression-free survival time for glioblastomas patients.
 High Radiation Dose Can Increase Survival Time For Brain Cancer Patients
High Radiation Dose Can Increase Survival Time For Brain Cancer Patients

In the study by the Radiation Oncology Department at UCLA's Jonsson Comprehensive Cancer Center patients who underwent such targeted high dose radiation experienced 15 months of progression-free survival. But patients receiving lower or no doses to the region known as stem cell niche experienced 7.2 months of progression-free survival, said Dr. Frank Pajonk, an associate professor of radiation oncology, a cancer center researcher and senior author of the study.

Pajonk said the study, published in the early online edition of the journal BMC Cancer, could result in changes in the way radiation therapy is given to patients with these deadly brain cancers.

"Our study found that if you irradiated a part of the brain that was not necessarily part of the tumor the patients did better," Pajonk said. "We have been struggling for years to come up with new combinations of drugs and targeted therapies that would improve survival for patients with glioblastoma. It may be that by re-shaping our radiation techniques we can extend survival for these patients."

The retrospective study focused on the cases of 55 adult patients with grade 3 or grade 4 glioblastomas who received radiation at UCLA between February 2003 and May 2009. Pajonk said a prospective study is needed to confirm the results.

There is some evidence that many if not all cancers may spring from stem cells or progenitor cells that normally repair damage to the body, but that somehow become mutated and transform into cancer. In this case, Pajonk said the neural stem cell niche, called the periventricular region of the brain, may also be harboring stem cells that have transformed into brain cancer stem cells. However, the niche serves as a sort of safe harbor for the cancer stem cells, keeping them away from the site of the tumor but able to re-grow it once it's removed and the malignant areas of the brain have been treated.

Pajonk theorizes that the brain cancer stem cells in the patients whose niches were irradiated with higher doses may have been damaged or eliminated, giving these patients more time before their cancer recurred.

"This suggests that the neural stem cell niche in the brain may be harboring cancer stem cells, thus providing novel therapy targets," the study states. "We hypothesize that higher radiation doses to these niches improve patient survival by eradicating the cancer stem cells."

Glioblastomas are the deadliest form of brain cancer. Surgery, chemotherapy and radiation are not usually effective and life expectancy is about 12 to 18 months. New and more effective treatments are needed to help this patient population, Pajonk said.

The radiation therapy could damage neural stem cells as well as the cancer stem cells, Pajonk said, but those may be replaceable at some future date using induced pluripotent stem cells made from the patient's own cells. The induced pluripotent stem cells, which like embryonic stem cells can make every cell in the body, could be induced into becoming neural stem cells to replace those damaged or eradicated by the radiation to the niche.

The study was funded by National Cancer Institute.

Source: Medindia

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

View All